Quantum mechanical studies of carbon structures

Norman C. Bartelt, Donald K. Ward, Xiaowang Zhou, Michael E. Foster, Peter A. Schultz, Bryan M. Wong, and Kevin F. McCarty

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 (SAND2014-3909 J). This work was performed under a Laboratory Directed Research and Development (LDRD) project. The authors appreciate the valuable discussions with the reviewers.

Approved for public release; further dissemination unlimited.
Quantum mechanical studies of carbon structures

N.C. Bartelt¹, D.K. Ward², X.W. Zhou³, M.E. Foster⁴, P.A. Schultz⁵, B.M. Wong⁶,⁷, and Kevin F. McCarty⁶

¹Materials Physics Department
Sandia National Laboratories
P.O. Box 969
Livermore, CA 94551-0969-MS9161

²Radiation and Nuclear Detection Materials and Analysis Department
Sandia National Laboratories

³Mechanics of Materials Department
Sandia National Laboratories

⁴Materials Chemistry Department
Sandia National Laboratories

⁵Multiscale Science Department
Sandia National Laboratories

⁶Previous member of Sandia National Laboratories

⁷Chemical and Environmental Engineering, Materials Science and Engineering
University of California Riverside

Abstract

Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
ACKNOWLEDGMENTS

CONTENTS

1. Introduction ... 8
2. QUANTUM MECHANICAL METHODS ... 9
3. Results ... 10
3. Summary ... 11
4. References .. 13

FIGURES

No table of figures entries found.

TABLES

Table 1. Cohesive energies E_c (eV/atom) and atom spacing r (Å) of various C clusters. For chain r values, the first value is the exterior bond length and the second number is the internal bond length. ... 10
Table 2. Cohesive energies E_c (eV/atom) and lattice constants a, c (Å) for selected lattices. Experimental values are given in parenthesis [9, 10] ... 10
NOMENCLATURE

di dimer
tri trimer
ch chain
tetra tetragon
sq square
dc diamond-cubic
sc simple-cubic
bcc body-centered-cubic
fcc face-centered-cubic
hcp hexagonal-closely-packed
gra graphite
grap graphene
MD molecular dynamics
DFT density functional theory
PAW projector-augmented-wave
VASP Vienna Ab initio Simulation Package
vdW van der Waals
GGA generalized-gradient approximation
PBE Perdew, Burke and Ernzerhof density functional
1. INTRODUCTION

Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their mechanical and electrical properties. To develop defect free C nanostructures, predictive molecular dynamics (MD) simulations of C growth mechanisms are very valuable. Such simulations require a high-fidelity C interatomic potential [1]. To generate reference data for parameterizing the C potential, we performed quantum mechanical calculations to determine the cohesive energy and structural properties of various configurations of C. For convenience, we will use the following abbreviations to represent structures: di: dimer; tri: trimer; ch: chain; sq: square; tetra: tetragon; dc: diamond-cubic; sc: simple-cubic; bcc: body-centered-cubic; fcc: face-centered-cubic; hcp: hexagonal-closely-packed; gra: graphite; grap: graphene.
2. QUANTUM MECHANICAL METHODS

All density functional theory (DFT) calculations were performed within the spin-polarization formalism using the optB86b-vdW functional [2] and projector-augmented-wave (PAW) [3, 4] pseudopotentials. The optB86b-vdW functional was used because of its ability to capture dispersion interactions (van der Waals forces) which are essential for modeling the intramolecular interactions in C based systems (e.g. the interactions between graphene sheets in graphite); moreover, this functional has been shown to improve over transition generalized-gradient approximation (GGA) functionals (e.g. PBE) for a range of solids on the prediction of lattice constants, cohesive energies, and bulk moduli [2]. For all calculations a plane-wave cutoff energy of 500 eV was used and full geometry optimizations (ions and unit cell) were performed until all forces were smaller than 0.01 eV/Å. For bulk lattices, the Brillouin zone was sampled using a $10 \times 10 \times 10$ gamma-centered Monkhorst-Pack grid [5]. For small clusters, the calculations are carried out in a $25 \, \text{Å}^3$ box using a gamma-point Brillouin zone. All calculations were performed within VASP 5.3.5 [6, 7, 8, 9].
3. RESULTS

The energies and atomic spacings of various clusters, consisting of four or less atoms for the elemental C are given in Table 1. The cohesive energies and atomic volumes of various elemental C lattice structures are given in Table 2. It should be noted that the experimental values for C structures [10, 11] are in good agreement.

Table 1. Cohesive energies E_c (eV/atom) and atom spacing r (Å) of various C clusters. For chain r values, the first value is the exterior bond length and the second number is the internal bond length.

<table>
<thead>
<tr>
<th>Structure</th>
<th>E_c</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetra</td>
<td>-3.9410</td>
<td>1.5065</td>
</tr>
<tr>
<td>square</td>
<td>-4.6471</td>
<td>1.4664</td>
</tr>
<tr>
<td>trimer</td>
<td>-4.8444</td>
<td>1.3753</td>
</tr>
<tr>
<td>dimer</td>
<td>-3.4625</td>
<td>1.3127</td>
</tr>
<tr>
<td>chain</td>
<td>-5.2705</td>
<td>1.3175, 1.2958</td>
</tr>
</tbody>
</table>

Table 2. Cohesive energies E_c (eV/atom) and lattice constants a, c (Å) for selected lattices. Experimental values are given in parenthesis [10, 11]

<table>
<thead>
<tr>
<th>Structure</th>
<th>DFT</th>
<th>E_c</th>
<th>a, c</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcc</td>
<td></td>
<td>-3.8272</td>
<td>2.3745</td>
</tr>
<tr>
<td>dc</td>
<td></td>
<td>-8.0186</td>
<td>3.5619 (3.56)</td>
</tr>
<tr>
<td>fcc</td>
<td></td>
<td>-3.6094</td>
<td>3.0884</td>
</tr>
<tr>
<td>gra</td>
<td></td>
<td>-8.0581</td>
<td>2.465, 6.3949</td>
</tr>
<tr>
<td>grap</td>
<td></td>
<td>-7.9919</td>
<td>2.4644</td>
</tr>
<tr>
<td>hcp</td>
<td></td>
<td>-4.1203</td>
<td>1.71965, 6.1473</td>
</tr>
<tr>
<td>sc</td>
<td></td>
<td>-5.2387</td>
<td>1.7517</td>
</tr>
</tbody>
</table>
3. SUMMARY

This work presents a database of energies and geometric parameters for a range of structures for elemental C. The values are determined from DFT and were used for parameterizing interatomic potentials for MD simulations [1].
4. REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>MS0359</th>
<th>D. Chavez, LDRD Office</th>
<th>1911</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS0899</td>
<td>Technical Library</td>
<td>9536 (electronic copy)</td>
</tr>
</tbody>
</table>