
SANDIA REPORT
SAND2012-2161
Unlimited Release
Printed April, 2012

A new time-dependent analytic model
for radiation-induced photocurrent in
finite 1D epitaxial diodes

Bert Kerr, Carl L. Axness, Jason C. Verley, Charles E. Hembree, and Eric R. Keiter

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.aspx#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2012-2161
Unlimited Release
Printed April, 2012

A new time-dependent analytic model for
radiation-induced photocurrent in finite 1D epitaxial

diodes

Bert Kerr
Mathematics Department

New Mexico Institute of Mining and Technology
Socorro, NM 87801

Carl L. Axness
Advanced Systems Analysis Department

Charles E. Hembree
Radiation Effects Research Department

Jason C. Verley and Eric R. Keiter
Electrical Systems Modeling Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1323

Abstract

Photocurrent generated by ionizing radiation represents a threat to microelectronics in ra-
diation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these
threats, and typically rely on compact models for individual electrical components such as
transistors and diodes. Compact models consist of a handful of differential and/or algebraic
equations, and are derived by making simplifying assumptions to any of the many semicon-
ductor transport equations. Historically, many photocurrent compact models have suffered
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from accuracy issues due to the use of qualitative approximation, rather than mathematically
correct solutions to the ambipolar diffusion equation. A practical consequence of this inac-
curacy is that a given model calibration is trustworthy over only a narrow range of operating
conditions. This report describes work to produce improved compact models for photocurrent.
Specifically, an analytic model is developed for epitaxial diode structures that have a highly
doped subcollector. The analytic model is compared with both numerical TCAD calculations,
as well as the compact model described in reference [2]. The new analytic model compares
well against TCAD over a wide range of operating conditions, and is shown to be superior to
the compact model from reference [2].
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1 Introduction

Circuit simulators, such as SPICE [1] or Xyce [5], are often used to analyze circuit-level photocur-
rent effects generated by ionizing radiation. Circuit simulators typically rely on compact models
for modeling the individual circuit components [6]. Such models are very small and efficient, but
are of relatively low fidelity, and rely heavily on calibration and empirical approximations. For
example, the photocurrent radiation models currently employed in Xyce are based on the compact
model presented in reference [2]. Similar to many compact models, the model presented in [2]
relies on empirical assumptions, particularly for handling the delay terms of the model.

In contrast to compact models, device simulators—often referred to as TCAD (Technology Com-
puter-Aided Design) simulators (e.g., [7], [8])—are capable of simulating individual transistors
at a much higher level of fidelity. Typically, simulators of this style use the drift-diffusion (DD)
formulation discretized over a multi-dimensional numerical mesh. While this style of simulation
is higher fidelity, and presumably more accurate than a compact model, it is also several orders of
magnitude more computationally expensive. TCAD-style simulators are often coupled to circuit
simulators [9], but the high computational costs make simulation of more than a handful of devices
prohibitive. Thus, there is motivation to develop fast running compact models, but with the fidelity
approaching that of TCAD.

In many practical applications, photocurrent is generated in one-dimensional (or nearly one-di-
mensional) structures in semiconductor devices. Examples include reverse-biased PN junctions
(such as the base-collector of a BJT) and the drain-body regions of MOSFETs. These devices are
often constructed with epitaxial layers, so to first order these regions may be analyzed by one-
dimensional models. This is a typical approximation used in compact models, but can also be used
to expedite TCAD calculations.

1.1 Drift-Diffusion Formulation

The transport behavior of excess carriers in semiconductors can be described using the well-known
drift-diffusion (DD) equations [10], [11]. (Other transport formulations exist, but DD is the one
most commonly used in device simulation.) This formulation consists of three coupled PDE’s: a
single Poisson equation for the electrostatic potential and two continuity equations, one each for
electrons and holes. They are given by:

−∇ · (ε∇φ) = q [p−n+C] (1)
∂n
∂ t

= ∇ · [nµnE+Dn∇n]−R+g (2)

∂ p
∂ t

=−∇ · [pµpE−Dp∇p]−R+g (3)

The right hand side of equation (1) is the charge density, which, for semiconductor devices, is
determined by the local carrier densities and the local doping. p is the concentration of holes, n is
the concentration of electrons, and q is the unit charge. C is the total doping concentration, which
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can also be represented as C = N+
D −N−A , where N+

D is the concentration of positively ionized
donors and N−A is the concentration of negatively ionized acceptors.

The continuity equations, (2) and (3), relate the time rate-of-change of the species concentrations
to their drift (nµnE and pµpE) and diffusion (Dn∇n and Dp∇p) currents, and to the destruction
and creation of the carriers (“recombination/generation”). R is the recombination rate and g is the
generation rate, which are the same for both species. µn and µp are the mobilities for electrons and
holes, respectively, and Dn and Dp are the respective diffusion constants. E is the electric field,
which can be calculated from the gradient of the potential as E =−∇φ .

1.2 Ambipolar Diffusion Equation

Equations (1)-(3) are not amenable to exact analytic mathematical techniques, so most photocur-
rent compact models (e.g., [2] [3] [4] [12] [13] [14] [15] [16] ) use the ambipolar diffusion equation
(ADE) to model the behavior of excess carriers in the undepleted regions of a device. The ADE
and related ideas originally appeared in the plasma literature, but were first suggested for semicon-
ductors by Van Roosbroeck [17].

Note that photocurrent from the undepleted regions of a semiconductor device (to which the ADE
is typically applied) constitutes the “delay” portion of a photocurrent model. Photocurrent from
the depleted regions of a device (the so-called “prompt” photocurrent) is generally handled using
different approximations. For examples of depletion region photocurrent, see section III of [16]
and equation (53) of [14].

The ambipolar diffusion equation is based on two approximations. The first is the electrical neu-
trality, or charge balance approximation, which states that the excess electron and hole densities are
equal across the entire domain. The second approximation is the congruence assumption, where
the flux of electrons and holes out of any region must be equal. These assumptions allow one to
combine equations (1), (2) and (3) into the single ambipolar diffusion equation (pp. 327-328 [11]).
The ADE is given by:

∂u
∂ t

= Da∇
2u−µaE ·∇u− u

τ
+g (4)

u is the excess carrier density (electrons or holes), Da is the ambipolar diffusion constant, µa is
the ambipolar mobility, g is the creation rate for electron-hole pairs and τ is the carrier lifetime.
Note that these parameters are all ambipolar parameters, as opposed to the free parameters used
by equations (1), (2) and (3). A full list of the ambipolar and free parameters used in this work is
given in Table 1.

Many of the ambipolar parameters depend upon the excess carrier density, making the ADE a non-
linear equation. However, in the case where the radiation generation density is low-level, the am-
bipolar parameters become approximately constant and the ADE becomes linear. The range over
which the radiation generation density is low-level depends upon the equilibrium (pre-radiation)
density of holes (p-type) or electrons (n-type) in the device region, which, in turn depend upon the
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Table 1: Definition and description of important physical constants and parameters.

Constant Description Units
G Generation density per rad in Si (4.3×1013) 1/cm3·rad(Si)
q Electronic charge (1.602×10−19) C
k Boltzmann constant (1.381×10−23) J/K

Parameter Description/Equation cgs units
Jn Minority carrier current density from the undepleted p region A/cm2

Jpp Minority carrier current density from the undepleted nn+ region A/cm2

Jdepl Current density from the depleted zone A/cm2

n(x, t) Electrons per unit volume 1/cm3

p(x, t) Holes per unit volume 1/cm3

p0 (x), n0 (x) Equilibrium hole or electron density, respectively 1/cm3

τp, τn Hole or electron lifetime, respectively s
µp, µn Hole or electron mobility, respectively cm2/V·s
Dp, Dn Hole or electron diffusion coefficient, respectively cm2/s
Lp, Ln Hole or electron diffusion length,

√
Dpτp or

√
Dnτn, respectively cm

u(x, t) Excess carriers per unit volume, p(x, t)− p0 (x) or n(x, t)−n0 (x) 1/cm3

Da Ambipolar diffusion coefficient, (n+p)DnDp
nDn+pDp

cm2/s
D1 Minority carrier diffusion coefficient in the epitaxial region cm2/s
D2 Minority carrier diffusion coefficient in the substrate region cm2/s
µa Ambipolar mobility, (n0−p0)µnµp

nµn+pµp
cm2/V·s

N1 Majority carrier doping in the epitaxial region 1/cm3

N2 Majority carrier doping in the substrate region 1/cm3

τa Ambipolar lifetime, p0+u
τp
− p0

τp0
= n0+u

τn
− n0

τn0
s

τ1 Minority carrier lifetime in the epitaxial region s
τ2 Minority carrier lifetime in the substrate region s
W Depletion width cm
γ̇ Dose rate rad(Si)/s
g Generation density, G · γ̇ 1/cm3·s

doping concentration. Low-level radiation conditions are defined to be u << n0 for n-type doped
material and u << p0 for p-type material, where n0 and p0 are the equilibrium electron and hole
densities, respectively (see pg. 328, [11]). In this study, the one-dimensional (1D) ADE is solved
in the undepleted n and n+ regions of a reverse-biased pnn+ diode. In these regions, the electric
field in the ADE is an ohmic field imposed by a voltage bias applied at the device contacts. For
explicitly-doped devices, the ambipolar parameters become the minority carrier parameters and
the photocurrent is dominated by the minority carrier current. For devices with significant doping,
this electric field is small and may be ignored (see pp. 330-333, [11]).

1.3 Photocurrent in Epitaxial Structures

The focus of this work is the development of new mathematical solutions for the ADE in doped epi-
taxial structures. The new solutions build upon the mathematical framework presented in [16], [18]
and [19]. An epitaxial structure is fairly common in silicon-based BJTs and CMOS devices. It
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may be used to enhance the performance of a device by electrically isolating the epitaxial structure
with an oppositely doped substrate. In addition, a thin, highly-doped layer can be added at the
substrate-epitaxial interface, which reduces device resistance. Finally, a substrate that is highly
doped relative to the epitaxial layer can aid in reducing radiation effects by reducing the minority
carrier lifetimes in the substrate. This limits the collection of excess carriers generated by ionizing
radiation in the substrate, and thus reduces the excess carriers diffusing to the device active regions.

Generally, we are interested in the photocurrent generated by pnn+ diodes under reverse bias,
which is the focus of this report. However, the solution derived herein also applies to an npp+

diode. At present, we are aware of only one analytic ADE solution that has evaluated radiation
generated photocurrent by solving the excess carrier density in epitaxial devices. The Long, Flo-
rian, and Casey (LFC) model [3] was developed in 1983. In that work, the ADE was solved to
determine photocurrent from an irradiated pnn+ diode under steady-state conditions, assuming
an infinitely-extending n+ substrate and a constant radiation generation density. An approximate
solution for the transient problem was given for a boundary condition that suppressed the current
from the substrate to the n region.

In addition to the LFC model [3], the Fjeldly model [2] also purports to treat the subcollector. How-
ever, the Fjeldly model is not based on a rigorous solution of the ADE. Subcollector effects are
accommodated by assuming that the addition of a highly doped vertical subcollector will restrict
photocurrent collection to within one diffusion length of the subcollector boundary, and accord-
ingly adjusting the area and volume prefactors applied to the “delay” portion of the model.

Similar to previous work ([16], [18], [19] and [20]), we use the finite Fourier transform tech-
nique [21] to solve the (1D) ADE and derive the exact transient carrier density in, and associated
photocurrent from, the unbiased nn+ sub-component of an epitaxial diode experiencing a radia-
tion transient. We show that our steady-state photocurrent solution for the nn+ region approaches
the solution of Long, Florian and Casey [3], as well the Stuetzer steady-state photocurrent solu-
tion [4], as the relevant parameters approach those of the respective models. Our transient solution
improves on that of [3], since it uses the correct nn+ boundary conditions, is the solution for a
finite diode, and takes into account an arbitrary time-dependent radiation generation density. We
also develop the analytical solution for a piecewise linear generation function so that it may be
used to analyze realistic pulses, including those based on experimental data.

We also compare the analytic solution to results from TCAD and Xyce calculations, the latter of
which uses the Fjeldly model [2]. The comparison begins with an examination of the excess carrier
density and photocurrent of a model pnn+ diode, with particular attention paid to the diode’s
unbiased nn+ sub-component. The influence of the substrate width on the photocurrent for this
device is also explored. We conclude by examining the excess carrier density and photocurrent
generated in a device whose doping and geometry parameters are based on the 2N2222 bipolar
junction transistor, a commercially available part.
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2 Mathematical Development

Determination of the photocurrent contribution from the undepleted regions of a diode requires
us to solve the ambipolar diffusion equation (given in equation (4)). Figure 1 shows the depleted
and undepleted regions of a reverse-biased 1D abrupt junction pnn+ diode under irradiation, along
with the coordinate systems used for deriving the analytic solution. It is worth noting that the
following derivation for a pnn+ diode can be applied to an npp+ device by simply reversing the n
and p subscripts. All the parameters used in this section are described in Table 1.

Several simplifying assumptions were made to make the solution to the ADE more tractable. In
particular, we wanted to make the solution easily implemented as a compact model, balancing ac-
curacy with computational complexity. Therefore, we first restricted the ADE to one dimension.
(While many electronic devices are inherently multi-dimensional in nature, the epitaxial struc-
tures targeted by this model lend themselves to a 1D analysis.) Next, we assumed the different
regions of the diode had constant doping levels. This results in constant mobilities and diffusion
coefficients in each region. (If the doping levels were spatially dependent, the mobilities and diffu-
sion coefficients would be functions of position, thus complicating the solution to the ADE.) The
diode was also assumed to be strongly extrinsic (highly-doped), such that the photocurrent from
the undepleted regions is dominated by the excess minority carriers, and the ambipolar parameters
become the minority carrier parameters in the undepleted regions. Additionally, we approximated
the boundary widths of the depleted and undepleted regions by the abrupt pn diode depletion re-
gion approximation ([22], pp. 74 – 77). While the formula was not derived for a pnn+ device, it is
a good approximation for devices where the depletion zones due to the nn+ and pn interfaces do
not overlap. Finally, we make the assumption that the electric field is negligible in the undepleted
regions of the device.

For a reverse-biased 1D pnn+ diode, the total photocurrent may be written as the sum of the
photocurrents generated in each region,

Jtotal = Jn + Jdepl + Jpp (5)

A simple analytic approximation for the depletion region current is Jdepl = qg(t)W . This approx-
imation assumes that all charge deposited in the depleted region is collected instantaneously by
the electric field, with no excess carrier recombination. The photocurrent in the irradiated ho-
mogeneous undepleted p region has been solved in [16]. We now proceed by determining the
photocurrent in the nn+ region. In the undepleted n region, the excess minority carrier density may
be found by solving the equation (cf. equation (4), with E = 0),

ut = D1uxx− 1
τ1

u+g(t) , 0≤ x≤ w1 (6)

where the parameters are given in Table 1. Similarly, in the epitaxial region the equation,

ut = D2uxx− 1
τ2

u+g(t) , w1 ≤ x≤ w2 (7)
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Figure 1: The depleted and undepleted regions of a reverse-biased 1D abrupt junction pnn+ diode
under irradiation, along with the coordinate systems used for deriving the analytic solution. The
radiation generation is assumed to be uniform throughout the device.

is assumed. The boundary conditions are:

u(0, t) = 0 (8)
u(w2, t) = 0 (9)

D1
∂u
∂x

∣∣∣∣
x=w−1

= D2
∂u
∂x

∣∣∣∣
x=w+

1

(10)

N1u(w−1 , t) = N2u(w+
1 , t) (11)

where w1 is the undepleted thickness of the epitaxial region and w2 is the undepleted thickness of
both the epitaxial region and the substrate. The third boundary condition requires that the excess
carrier current be continuous through the nn+ junction, and the fourth boundary condition requires
that the ratio of the excess carrier density on each side of the junction remains fixed at a value
dictated by the ratio of the majority carrier concentrations, N1 and N2. This boundary condition
was suggested in [3], and we have verified that it holds when the nn+ boundary is sufficiently far
from the pn depletion region through the comparison shown in Figure 2 in Section 3.1. The initial
condition is assumed to be

u(x,0) = 0 , 0 < x < w2 (12)

2.1 Steady-State Solution

For steady-state equilibrium conditions (assuming g(t) = g, t ≥ 0), a closed form equation for the
excess carrier density can be obtained. The general solution to the steady-state diffusion equation
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is

U(x) = A
2 eα1x +Ce−α1x +gτ1 , 0≤ x≤ w1

U(x) = B
2 eα2(w2−x)+Ee−α2(w2−x)+gτ2 , w1 ≤ x≤ w2

(13)

where αi =
1√
Diτi

, for i = 1,2 and we use U(x) to represent the steady-state solution. Using
equations (8) and (9) enables us to evaluate C and E, leaving us with,

U(x) = Asinh(α1x)+gτ1 [1− e−α1x] , 0≤ x≤ w1

U(x) = Bsinh(α2(w2− x))+gτ2

[
1− e−α2(w2−x)

]
, w1 ≤ x≤ w2

(14)

For convenience, we relabel this solution as

U(x) = AS1(x)+gτ1G1(x) , 0≤ x≤ w1

U(x) = BS2(x)+gτ2G2(x) , w1 ≤ x≤ w2

(15)

Then, to satisfy boundary conditions (10) and (11), we require

N1 [AS1(w1)+gτ1G1(w1)] = N2 [BS2(w1)+gτ2G2(w1)] (16)

and

D1
[
AS′1(w1)+gτ1G′1(w1)

]
= D2

[
BS′2(w1)+gτ2G′2(w1)

]
(17)

Applying Cramer’s rule and solving these equations for A and B it follows that,

A = g
N2S2(w1) [D2τ2G′2(w1)−D1τ1G′1(w1)]−D2S′2(w1) [N2τ2G2(w1)−N1τ1G1(w1)]

D1N2S′1(w1)S2(w1)−N1D2S1(w1)S′2(w1)
(18)

and

B = g
N1S1(w1) [D2τ2G′2(w1)−D1τ1G′1(w1)]−D1S′1(w1) [N2τ2G2(w1)−N1τ1G1(w1)]

D1N2S′1(w1)S2(w1)−N1D2S1(w1)S′2(w1)
(19)

Substituting (18) and (19) into (14) completes the steady-state solution.

The steady-state photocurrent, which we designate as Jpp (∞), can be calculated from

Jpp (∞) = qD1
∂U
∂x

∣∣∣∣
x=0

= qD1α1 (A+gτ1) (20)

In Appendix B we show that our finite steady-state nn+ photocurrent solution approaches that of [3]
as the length of the n+ region approaches infinity. We also show that the photocurrent approaches
the solution of [4] as the doping and parameters in the epitaxial and substrate regions approach
each other and the nn+ zone becomes entirely homogeneous.
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2.2 Transient Solution

The general solution of the BVP defined by equations (6)–(12) may be found by the finite Fourier
transform method ([16], [21]). However, determining the required eigenvalues and eigenfunctions
for this transform is less straightforward than for a homogeneous region. The two composite lay-
ers within the region, coupled with the interface boundary conditions (10) and (11), produce a
sequence of piecewise continuous eigenfunctions, in which the eigenvalues are given by a tran-
scendental equation. The development is presented in Appendix A.

For an arbitrary time-dependent g(t), the formula for the excess carrier density in the nn+ region
may be written as,

u(x, t) =
∞

∑
n=1

wn

∫ t

0
g(v)e−λn(t−v)dv

Xn(x)

‖Xn‖2 (21)

The associated photocurrent (defined to be positive for convenience) is given by

Jpp(t) = qD1
∂u
∂x

∣∣∣
x=0

= qD1
∞

∑
n=1

wn
∫ t

0 g(v)e−λn(t−v)dv X ′n(0)
‖Xn‖2

(22)

The definitions of wn, λn, Xn(x), and ‖Xn‖2 are given in Appendix A. For the case where g(t) = g
(a constant), equation (21) reduces to

u(x, t) =U(x)−g
∞

∑
n=1

wn
e−λnt

λn

Xn(x)

‖Xn‖2 (23)

where U(x) is the steady-state solution. The photocurrent density is,

Jpp(t) = qD1α1

[
A+gτ1−

g
α1

∞

∑
n=1

wn
e−λnt

λn

X ′n(0)

‖Xn‖2

]
(24)

For the case where the carrier generation rate is a step function,

g(t) =


g , 0≤ t ≤ t ′

0 , t ′ < t < ∞

(25)

equation (21) reduces to

u(x, t) =


U(x)−g

∞

∑
n=1

wn
e−λnt

λn

Xn(x)
‖Xn‖2 , 0≤ t ≤ t ′

g
∞

∑
n=1

wn
e−λn(t−t′)−e−λnt

λn

Xn(x)
‖Xn‖2 , t ′ < t < ∞

(26)
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and the associated photocurrent is given by

Jpp(t) =


qD1α1

[
A+gτ1− g

α1

∞

∑
n=1

wn
e−λntX ′n(0)

λn‖Xn‖2

]
, 0≤ t ≤ t ′

qgD1
∞

∑
n=1

wn
e−λn(t−t′)−e−λnt

λn

X ′n(0)
‖Xn‖2 , t ′ < t < ∞

(27)

The transient solution converges very quickly, and the analytic simulations reported in the fol-
lowing sections required only a few hundred terms to converge. Observe that the formulas for
the excess carriers and photocurrent are linearly dependent upon g. Therefore, a single normal-
ized curve represents all radiation levels. We will use this fact throughout the remaining sections
when comparing analytic and TCAD results. For the case of a general piecewise linear g(t), the
analogous formulas of (26) and (27) are given in Appendix C.
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3 Code Comparisons

In this section, we compare the analytic model to other computational models, which have differ-
ing levels of fidelity. The goal of these comparisons is to examine the validity of using the ADE
to model photocurrent, and also to provide some evidence that the assumptions made in our ana-
lytic model were valid. These comparisons do not include comparisons against experimental data,
which is required to fully validate any computational model.

In section 3.1, the analytic model is compared to a TCAD device simulator, Sentaurus [7], for
an ideal device. The device has a constant doping in each region, rather than having a spatially-
dependent profile, which is more typical in realistic devices. The doping levels and the physical
parameters and dimensions were chosen for their simplicity, so as to best elucidate the success or
failure of the analytic model in an idealized case. In section 3.2, we perform a similar comparison,
but for a realistic commercial device. For the realistic device comparison, we compare the new
model to TCAD, and also compare it to the Fjeldly [2] photocurrent model, which is a lower
fidelity compact model.

Sentaurus solves the DD equations (equations (1)–(3)) over the entire device. The analytic model is
a lower-fidelity formulation than the DD equations, in that its derivation involves several additional
approximations. These extra approximations include:

1. The ADE is derived under the electrical neutrality assumptions ([11], [17]).

2. The analytic model assumes that the photocurrent is dominated by the minority carrier dif-
fusion currents from the undepleted regions and the field-driven depletion current.

3. The analytic model assumes a simple photocurrent solution in the depletion region and uti-
lizes an approximation for the boundaries between the depleted and undepleted regions.

4. Simple boundary conditions at the depleted/undepleted boundaries and the nn+ interface are
assumed in the analytical model, which are not exactly met in the TCAD code.

5. The analytic model assumes constant doping levels in each region, whereas that is not re-
quired for a TCAD code.

Each of the above assumptions may result in differences between analytic model results and
TCAD. By performing this comparison, it is possible to evaluate the consequences of these as-
sumptions, and how they impact the applicability of the ADE.

Some particulars of the Sentaurus calculations are as follows. For this 1D case, the boundary con-
ditions in Sentaurus are required to be defined only at the contacts. (Sentaurus is inherently a 3D
code, so reflective boundary conditions are enforced on the surfaces parallel to the x-coordinate.)
The contact boundary conditions were chosen to be ohmic, which assumes charge neutrality and
equilibrium [7]. Additionally, the analytic solution is in terms of the excess carrier density, while
Sentaurus computes only the total electron and hole concentrations within the device. Therefore,
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Table 2: Parameters selected for the ideal device.

Input Description value units
N0 Doping in the p doped region 1×1016 cm−3

N1 Doping in the n doped region 1×1016 cm−3

N2 Doping in the n+ substrate 1×1018 cm−3

τ0 Minority carrier lifetime, p region 2×10−5 s
τ1 Minority carrier lifetime, n region 2×10−5 s
τ2 Minority carrier lifetime, n+ region 1×10−7 s
w0 Undepleted length, p region 2.8875×10−4 cm
w1 Undepleted length, n region 2.8875×10−4 cm
w2 Undepleted length, n region + n+ region 1.28875×10−3 cm
W Abrupt pn depletion width 1.225×10−4 cm
D0 Minority carrier diffusion coefficient, p region 25.9 cm2/s
D1 Minority carrier diffusion coefficient, n region 10.36 cm2/s
D2 Minority carrier diffusion coefficient, n+ region 2.59 cm2/s
V Voltage bias across diode -5 V

we post-process the Sentaurus data by subtracting the pre-irradiation carrier densities from those
computed during irradiation to find the excess carrier densities.

3.1 Comparisons for an Ideal Epitaxial Device

In this section the analytic model is compared to TCAD [7] simulations for an ideal device that has
constant doping in each region. Recall that the analytic model assumes constant doping levels. By
targeting an idealized device for this comparison, one potential source of discrepancy between the
analytic model and the TCAD simulations is eliminated.

The parameters used in the analytic model and TCAD simulations are given in Table 2. The
depleted and undepleted region widths were calculated from the analytic abrupt diode equations
(e.g., see [22], pp. 74 – 77). These are consistent with the depleted and undepleted region widths
calculated by Sentaurus from the carrier concentrations.

3.1.1 Steady-State and Long Radiation Pulse Comparisons

Figure 2 illustrates steady-state analytic and TCAD normalized excess minority carrier densities
from an unbiased irradiated nn+ doped silicon region, with parameters as shown in Table 2. Anal-
ysis of just the nn+ region of a pnn+ diode enables a more accurate validation of the analytic
solution, since it avoids the possible errors induced by the addition of currents from the depletion
region and the p-doped region.

The nn+ region is simulated without an applied potential, even though the scenario of interest is
a device under reverse bias. This is because the doping levels in this example are high enough
that most of the applied potential is dropped across the pn junction, which has been excluded from
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Figure 2: Normalized (with respect to dose rate) steady-state excess minority carrier density for an
irradiated nn+ region as a function of position. The right depletion edge in the pnn+ diode (Figure
1) would correspond to x = 0 in the figure. The densities with dose rate labels are numerically
simulated with Sentaurus.

the calculation. Thus, the ohmic fields in the undepleted regions are practically zero. As a result,
the unbiased nn+ calculation gives a good approximation to the photocurrent generated from the
undepleted nn+ region in a reverse-biased pnn+ device.

The TCAD excess carrier densities in the plot are normalized by the radiation dose rate. Con-
tinuous radiation pulses with dose rates between 1× 104 rad(Si)/s and 1× 1012 rad(Si)/s were
simulated, and are plotted at t = 1× 10−4 s after pulse initiation, which is well after the excess
carrier density achieved a steady state. The TCAD simulations show that the dependence of the
excess carrier density on the dose rate is approximately linear for dose rates less than 1× 1010

rad(Si)/s, and are in close agreement with the analytic solution over this range. Higher dose rates
(high-level irradiations) in the TCAD solutions show an increase in the excess carrier density in
the n+ region, and a decrease in the excess carrier discontinuity at the nn+ interface.

The shape of the analytic and TCAD carrier density curves are similar at the nn+ interface. The
fact that the quasi-discontinuity in the simulated solution is the same order of magnitude in both
solutions gives some credence to the assumptions made in the nn+ interface boundary conditions
(equations (10) and (11)). Also, the difference in the minimum value of the interface carrier density
may be affected by the mesh-based discretization of the TCAD calculation.

Figure 3 shows a comparison between the new subcollector solution, TCAD, and analytic solutions
for two simpler, homogeneous bounding cases. All data in the figure is of normalized excess carrier
densities computed for a 1× 109 rad(Si)/s dose rate. The two bounding cases are normalized
analytic steady-state excess carrier densities for n and n+ homogeneous regions. These regions
have the same doping levels as the original nn+ region, but are either entirely n or n+ doped.
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Figure 3: Normalized steady-state excess minority carrier density for irradiated nn+, n+ and n
regions as a function of position, using the parameters given in Table 2. The plot labeled ”sim-
ulation” refers to a Sentaurus TCAD simulation at 1× 109 rad(Si)/s dose rate. The dotted and
dot-dashed lines are, respectively, the excess carrier densities for homogenous n and n+ doped
regions computed from the solution of [16].

The homogeneous simulations show that the excess carrier density for the nn+ region approaches
the homogeneous n excess carrier density as one approaches the left contact and the homogeneous
n+ excess carrier density as the right contact is approached. One would expect this behavior in a
device where the contacts are located sufficiently far from the nn+ interface.

Figure 4 is a plot of the photocurrent density coming from the nn+ region, and illustrates a tran-
sition from low radiation levels, where the analytic solution is fairly accurate, to high radiation
levels, where the analytic solution starts to diverge from TCAD. This divergence probably occurs
because some of the analytic model assumptions are no longer valid. The normalized transient
carrier photocurrent density from the nn+ region due to an infinitely-long radiation pulse is shown
in the figure. The photocurrent densities are normalized to a 1×109 rad(Si)/s radiation dose rate.
The TCAD simulations were performed assuming dose rates from 1× 104 rad(Si)/s to 1× 1012

rad(Si)/s. The analytic and TCAD photocurrents between 1×104 rad(Si)/s and 1×1010 rad(Si)/s
essentially overlap. High-level radiation effects become apparent in the TCAD photocurrent sim-
ulations when the dose rate exceeds 1×1010 rad(Si)/s, and the photocurrent becomes superlinear
with respect to g.

Comparison of the normalized analytic result with the TCAD result shows the analytic photocur-
rent to be highly accurate for low-level irradiations. In fact, the steady-state normalized photocur-
rent for a 1× 109 rad(Si)/s dose rate was computed as 4.62673 A/cm2 using equation (20), and
Sentaurus computed the photocurrent as 4.62454 A/cm2 at t = 1× 10−4 s. Even at the highest
simulated radiation level the difference between the TCAD photocurrent density and the analytic
photocurrent density is less than 30%. Examination of the TCAD-computed excess carrier den-
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Figure 4: The normalized analytic and TCAD photocurrent densities for the nn+ region as a func-
tion of time for a long irradiation.

sity, electric field, and electron and hole densities (not shown here) at 1×1012 rad(Si)/s dose rate,
for example, reveal a reduced transition region width from equilibrium (a violation of boundary
condition given by equation (11)), non-zero and non-uniform electric fields outside the depletion
region, and an excess minority carrier density that is higher than the doping in the n region. These
effects are either not considered, or are in violation of the assumptions of the analytic photocurrent
model, so a significant error at very high radiation levels is to be expected. Our results show that
there is very little error in using the ADE for simulation of photocurrent in lieu of the complete set
of transport equations for the nn+ region at low-level irradiation levels.

Figure 5 illustrates the transient analytic and TCAD photocurrent densities of the nn+ region at
a 1× 109 rad(Si)/s dose rate, along with two bounding cases. The two bounding cases are for
undepleted homogeneous n and n+ regions, computed using the photocurrent solution of [16],
and are shown as dotted and dashed lines. The currents are close to steady-state at 300 ns in
all the simulations. The large difference between the homogeneous n and n+ photocurrents is
due to the difference in the depletion length,

√
Dτ , for these simulations. The plot shows that

the nn+ photocurrent is dominated by the n-doped region and that the use of the n+ substrate
for this particular device results in a slightly higher steady-state photocurrent density for the nn+

simulation than the homogenous n-doped simulation.

Figure 6 illustrates the transient analytic and TCAD nn+ region simulated minority carrier pho-
tocurrent densities for varying widths of the n+ substrate region (w2−w1). The radiation dose
rate is 1× 109 rad(Si)/s, and the substrate width is indicated on the right side of the figure. The
analytic and TCAD plots essentially overlap in each case. It is apparent that, for the parameters
and doping levels used in these nn+ simulations, a significant amount of charge is collected from
deep within the substrate, to a depth of between 20–30 µm. The steady-state photocurrent for a
long radiation pulse, (g(t) = g, t ≥ 0), from a nn+ region with an infinitely long n+ substrate is
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Figure 5: The transient normalized analytic and TCAD photocurrent densities for nn+, n+ and n
regions for a long 1×109 rad(Si)/s dose-rate irradiation.

5.4875 A/cm2. This was computed with equation (20) by replacing A with the A∞ of equation
(B-5), which is shown in Appendix B to be identical to the steady-state photocurrent solution of
[3]. In steady-state (after 1×10−4 s), the TCAD simulations yield a photocurrent of 5.4978 A/cm2

for the 100 µm thick n+ substrate, and 5.4830 A/cm2 for the 30 µm thick substrate.

3.1.2 TCAD and Analytic Comparisons for a Short Radiation Pulse

An important property of our analytic solution is that it is accurate for both short and long radiation
pulses, when compared to TCAD simulations. For this reason, we demonstrate in this section that
the analytic photocurrent solution presented in the previous section for a long current pulse also
agrees well with the TCAD solution for a short current pulse. Figure 7 shows the analytic and
TCAD normalized minority carrier photocurrent response for the nn+ doped silicon region of the
ideal diode due to a 1 ns pulse at various radiation levels. We again see that the analytic model is
in very close agreement to the TCAD model for low to mid-level irradiation conditions. For very
high irradiations, the peak photocurrent increases by a small amount, and there is a slight bulge in
the tail; but the use of the analytic solution for high-level irradiations in this case does not produce
an unacceptable error for most applications.

3.1.3 Numerical and Analytic Comparisons for a pnn+ Epitaxial Diode

Figure 8 illustrates the normalized total and undepleted region minority carrier photocurrent den-
sities for a long 1× 109 rad(Si)/s dose rate radiation pulse irradiating the model pnn+ epitaxial
diode. Both the analytic solution and TCAD simulations performed by the Sentaurus simulator
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Figure 6: The transient normalized analytic and TCAD photocurrent densities for the nn+ region
as a function of the substrate width, w2−w1, for a long 1×109 rad(Si)/s dose rate irradiation.
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Figure 7: The normalized TCAD and analytic transient photocurrent densities for the nn+ region
for a 1 ns, 1×109 rad(Si)/s dose irradiation. The dose rates for Sentaurus irradiations are given in
the legend.

are shown. The TCAD normalized photocurrent densities, given by dashed lines in the figure, are
computed by the Sentaurus code assuming a 5 V reverse bias and the parameters of Table 2. The
total analytic normalized minority carrier photocurrent is computed using equation (5), assuming
the previously-computed nn+ photocurrent (Jpp) and the undepleted p region photocurrent (Jn)
calculated using the photocurrent solution of [16]. The analytic depletion current, Jdepl = qg(t)W ,
is calculated with W computed from the pn depletion approximation using the base and collector
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Figure 8: Short and long time scale transient normalized TCAD and analytic transient photocurrent
densities for the pnn+ diode for a 1×109 rad(Si)/s dose rate radiation pulse. The inset shows the
photocurrents over a longer time scale.

parameters and an applied bias of −5 V.

It is apparent from the plot that the TCAD and analytic photocurrents are very close for t > 0.2
ns. At very early times, t ≤ 0.1 ns, the analytic solution overestimates the TCAD result for total
photocurrent. The most likely explanation is the simple model used to compute the photocurrent
from the depletion zone. Obviously, there is some recombination of carriers in the depletion region
and the collection of these carriers is not instantaneous in the TCAD model.

3.2 Comparison for a Realistic Epitaxial Device, the 2N2222 Transistor

In this section, we compare the analytic, TCAD, and Xyce-computed photocurrent and excess
carrier densities for simplified 1D versions of the 2N2222 transistor (herein called the 2222). A
detailed description of the transistor can be found in [23]. We evaluate the effect of circuit elements,
as well as the inert zero-biased emitter part of a circuit on the photocurrent. The focus is to
evaluate the error between the TCAD and analytic simulations as we approach a more complex
TCAD/circuit model. Also of interest is to demonstrate when, and if, the new analytic model is
superior to the compact photocurrent model [2] presently used in Xyce.

We compare results using two generation function waveforms. The first is a step wave pulse with
a dose rate of 5.8×108 rad(Si)/s. The step wave simulations were used to determine the depletion
width during the simulations, as well as the excess minority carrier densities and electric field in the
base-collector region. The second waveform is a sawtooth generation function waveform, shown
in Figure 9. The maximum of this waveform corresponds to the peak dose rate of the square wave,
and the shape was selected in order to compare the time-dependence of the various models. The
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Figure 9: Sawtooth generation function used for comparison of TCAD, analytic and Xyce codes.

purpose of the sawtooth waveform comparison is to evaluate the differences between the analytic
and the Xyce photocurrent models for the same calibrated set of parameters. Additionally, we com-
pare the TCAD and analytic models for the same waveform at higher and lower frequencies (short
and long pulses) to evaluate the robustness of the analytic model. The high and low frequency
pulses are obtained by using the same pulse amplitude, but scaling the time by a multiplicative
factor. We also compare the analytic and TCAD models at two biases: −5 V and −10 V.

The analytic photocurrent model is capable of simulating a pnn+ device with uniform doping, but
cannot take into account a doping profile or spatially-dependent mobilities or lifetimes. As such,
the doping profiles associated with the real device are replaced with abrupt junctions and uniform
doping. Table 3 gives the doping, mobility, lifetime and width for each diode region used in the
analytic and TCAD models of the 2222 device. Only the minority carrier parameters are used in
the analytic model. For the TCAD simulations, the majority carrier lifetimes are set to the values
of the minority carrier lifetimes. Some experimentation with the majority carrier lifetimes using
the TCAD models indicated that their effect on the photocurrent was minimal. The doping values
in the collector and sub-collector correspond approximately to the measured doping concentrations
in the areas where the doping is constant (see Figure 4.1 of [23]), that is, the values in the regions
outside of the transition zones. The values of the minority carrier mobility and lifetime used in the
analytic and TCAD models were obtained through calibration of the Xyce model to photocurrent
data [23] taken at the timescale of the pulse shown in Figure 9. Table 4 lists the widths of the
various regions used in the analytic model, which were calculated from the Sentaurus simulation
results.

For the analytic model, the photocurrent from the diode is computed as the sum of the photocur-
rents computed by solving the ADE in each of the undepleted regions, and adding in the current
from the well depletion zone. In the analysis of Section 3.1, the undepleted region solutions for the
transient cases were calculated with the equations presented in Section 2.2. However, the genera-
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Table 3: 2222 physical parameters. Only the minority carrier parameters are used in the analytic
model.

Region µn µp τn,τp Doping Width
(cm2/V·s) (cm2/V·s) (s) (cm−3) (µm)

emitter (n) 1161 77.4 2.0×10−8 4.0×1019 2.0
base (p) 638.3 127 4.0×10−8 2.0×1016 1.6
collector (n) 3191 445 2.0×10−6 6.0×1014 4.52
sub-collector (n+) 2553 511 2.0×10−7 1.0×1018 200.

Table 4: 2222 widths used in the analytic model in µm. The sub-collector had a width of 200 µm
in all of the simulations.

Region
Device simulation

nn+ & pnn+ npnn+

5 V 10 V 5 V
undepleted emitter (n) – – 2.0
emitter-base depletion – – 0.248
undepleted base (p) 1.561 1.526 1.313
base-collector depletion 3.133 4.248 3.133
undepleted collector (n) 1.426 0.346 1.426

tion function in Figure 9 was expressed as a discrete data set, and the solutions from Section 2.2
can not be applied to a waveform that does not have an analytic expression. Therefore, a solu-
tion for the case of a general piecewise linear generation function was developed. This solution
is shown in Appendix C, with the expression for the analytic photocurrent density being given by
Equation (C-7).

In the previous analysis of the excess minority carrier density and photocurrent from an unbiased
nn+ doped diode collector/subcollector region, the analytic solution agreed almost exactly with
Sentaurus simulations. The principle differences between that structure and the 2222 structure are
that the 2222 has a lower doping concentration in the collector region, and the thickness of the un-
depleted region of the collector is significantly smaller, especially at the −10 V bias. This results
in a significant ohmic field in the collector region in TCAD simulations due to the high resistiv-
ity in the lightly n-doped 2222 collector. This electric field is not accounted for in the analytic
simulations. In addition, the analytic and TCAD excess minority carrier densities at the collector/-
subcollector boundary may also be different due to the proximity of this transition region to the
depletion edge in the 2222 structure. Due to these and other possible differences, the calculated
photocurrent for the 2222 from the analytic method and TCAD simulations could be significantly
different.
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3.2.1 Simulations of the nn+ Region

Figure 10 gives a comparison of the excess minority carrier density concentration in the 1D abrupt
junction nn+ collector and subcollector regions of the 2222 diode, computed using the steady-state
analytic model, and numerically with the Medici and Sentaurus codes. Medici [24], like Sentaurus,
is a TCAD drift-diffusion code. A square wave generation function and two applied biases were
assumed in Figure 10, with the nn+ collector and subcollector region parameters set according to
the data of Tables 3 and 4. The radiation dose rate was 5.8×108 rad(Si)/s for all the simulations.
To ensure the excess carrier density calculated from the TCAD simulations was from a steady-
state condition, the irradiated densities were extracted at the end of a 1×10−4 second pulse. The
analytic simulation is the steady-state excess minority carrier density after an infinitely long pulse.
The Medici and analytic solutions are for the nn+ region only, where the widths of the n region
at the two biases were computed from the Sentaurus simulations, and are given in Table 4. The
Sentaurus solutions include the entire diode, with the bias applied at the base and subcollector
contacts. It is apparent from this figure that the proximity of the nn+ interface to the depletion
edge in the 2222 structure significantly lowers the excess minority carrier density in the collector
as compared to the analytically-computed excess carrier density. Similarly, from the Sentaurus
simulation of the entire diode structure, we see that the conditions for the idealized zero excess
minority carrier boundary condition at the depletion edge are not met, particularly at the higher
bias.
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Figure 10: Comparison of excess minority carrier densities in the 1D abrupt junction nn+ collector
and subcollector regions of the 2222 diode at steady-state, due to an infinite 5.8× 108 rad(Si)/s
irradiation pulse. The Medici results simulate only the nn+ collector and subcollector regions and
the Sentaurus results are for the entire pnn+ diode. The reverse biases applied across the base and
sub-collector are indicated.

Figure 11 gives the 2222 collector region electric fields, as computed by the Sentaurus program
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with no irradiation. The entire pnn+ diode is simulated. We observe clear, separate pn and nn+

depletion regions in this figure at 0 V and −5 V biases, with only a small field in the undepleted
collector at −5 V. A significant electric field occurs throughout the collector region of the device
at −10 V. This indicates the pn and nn+ depletion zones are not fully distinct in this case, which is
reflected in the sub-micron width of the undepleted n region shown in Table 4 for the −10 V bias
condition.
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Figure 11: The numerically-computed electric field in the 1D abrupt junction nn+ collector and
subcollector regions of the 2222 diode for 0 V,−5 V, and−10 V biases, as calculated by Sentaurus
with no irradiation.

From the plots in Figures 10 and 11, one might expect a significant difference between the ana-
lytic and TCAD nn+ minority carrier photocurrents generated with the generation function given
by Figure 9. The results of a Sentaurus simulation of just the nn+ region, along with the analytic
result using the undepleted regions widths given above, are shown in Figure 12. As seen in the
figure, there is very little difference between the two photocurrent densities. This result could be
surprising, since there are significant differences in the excess carrier density inside the collector,
and the idealized boundary condition between the n and n+ regions is not met in the TCAD simu-
lations. The explanation comes from the fact that the current flux leaving the nn+ region is defined
by the derivative of the excess carrier density at the boundary with the depletion region (see equa-
tion (22)). As can be seen in Figure 10 for the steady-state case, the analytic solutions overlap
the Medici simulations (which include only the nn+ regions) at the depletion region boundaries.
It would appear that the error produced by the boundary condition for the nn+ interface does not
appreciably affect the solution at the boundary with the depletion region. Since the derivatives are
nearly equal, so are the current densities. Even though Figure 10 reflects the steady-state case, the
same explanation would apply for the dynamic case of Figure 12. The reasons for this are explored
next.
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Figure 12: Comparison of the minority carrier photocurrent density from the 1D abrupt junction
nn+ collector and subcollector regions of the 2222 diode. The TCAD results are from the Sentaurus
simulations of the nn+ region of zero-biased 2222 diode, assuming the undepleted collector width
computed by applying a bias of −5 V on the entire diode.

The generation function given in Figure 9 is effectively a long, low frequency pulse, so the pho-
tocurrent response at any point along the curve is almost entirely described by the steady-state
photocurrent. We note that by scaling the generation function with respect to time (dividing by
100, e.g.), we produce a short pulse with high frequency components. In this case one might not
expect the conditions present in the steady-state solution to apply. Figure 13 compares the analytic
model with the Sentaurus TCAD simulation for a pulse compressed by a factor of 100. Surpris-
ingly, we again find that the analytic and TCAD photocurrents are essentially the same, though the
overall shape of this photocurrent curve has changed significantly from the low-frequency compar-
ison. This indicates a robustness of the analytic model’s ability to faithfully reproduce the excess
carrier density (and, thus, the current density) at the boundary of the nn+ region with the depletion
zone, even outside the steady-state condition.

3.2.2 Simulations of the Full 2N2222 Transistor and the pnn+ Region

In this section, we compare simulations of the 2222 photocurrent from the Sentaurus TCAD model,
the analytic model, and the Xyce circuit code. Special attention will be given to the pnn+ diode
component of the transistor. Reverse biases of 5 V and 10 V are considered, as well as responses to
modified versions of the generation function given by Figure 9, where the time parameter is either
compressed or expanded. For these simulations there are some differences between the models that
cannot be controlled; for example, the excess minority carrier density at the edge of the depletion
zone is assumed to be zero in the analytic model, whereas this is not in the case in the TCAD
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Figure 13: Comparison of the minority carrier photocurrent density from the 1D abrupt junction
nn+ collector and subcollector regions of the 2222 diode where the time scale of the generation
function of Figure 9 has been divided by 100. The TCAD results are from the Sentaurus simu-
lations of the nn+ region of the zero-biased 2222 diode, assuming the undepleted collector width
computed by applying a bias of −5 V on the entire diode.

simulations, as shown by the Sentaurus plots in Figure 10. Likewise, in the TCAD simulation the
depletion zone boundary is not abrupt.

The Xyce simulations and some of the Sentaurus simulations included a circuit model that repre-
sented one used to test the 2222 bipolar junction transistor (BJT) at radiation facilities. Figure 14
shows the BJT as a circuit element within the testing circuit. The bias is applied through a voltage
source located at the bottom right node in the figure. The purpose of the low-pass RC circuit at
the right side of the BJT is to reduce a possible voltage drop at the power source due to the limited
response time of real power sources; the charge in the large capacitor helps to maintain a constant
potential at the sub-collector. The 50 Ω resistor at the base of the BJT allows the measurement
of the photocurrent, which is computed from the voltage drop across the resistor. The emitter is
tied to the base contact to maintain zero potential across this junction. Sentaurus simulations with
and without the external circuit had nearly identical responses for all but the highest frequency
simulations.

In order to compute the photocurrent from the analytic model for the full 2222 device, the emitter
must be added to the pnn+ device. We assume the bias across the emitter and base to be 0 V,
although the bias can vary in the actual circuit. Since the doping in the emitter is three orders of
magnitude greater than the base, we compute the width of the resulting np emitter-base depletion
region using the one-sided junction approximation (formula 6.22 in [25]), and assume that the
entire depletion region is in the base. Our analytic photocurrent computation is thus modified by
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Figure 14: 2N2222 BJT and the circuit used in radiation testing and in the Xyce simulations. The
voltage induced by the photocurrent is measured at the node between the 50 Ω resistor and the BJT
base.

adding the photocurrent collected from the emitter-base depletion zone and the entire undepleted
emitter. We also modify the width of the undepleted base by subtracting from it the emitter-base
depletion zone width. The widths are given in Table 4, and the other parameters are in Table 3.

The mobility and lifetime parameters used in the calibration of the Xyce model of the 2222 are
taken from [23], and do not match those associated with these doping levels in most publications.
The values were obtained by calibration of the Fjeldly model [2] with data from 2222 radiation
tests. These parameters were used in the analytic simulation, but doping parameters from Figure
4.1 of [23] were used to establish the boundary condition at the nn+ interface. The same parameters
were also used in the Sentaurus model, and are shown in Table 3.

Figure 15 gives the comparison between the three models for the nominal generation function
(shown in Figure 9). Subfigure 15a includes the full transistor as it behaves in the circuit of Fig-
ure 14, while Subfigures 15b and 15c include only the reverse-biased pnn+ diode part of the 2222.
The good agreement between the Sentaurus, analytical, and Xyce simulations is in part due to the
fact that the radiation pulse is long and changes slowly with respect to time, so that the photocur-
rent is dominated by the steady-state photocurrent from the nn+ region. This is likely part of the
reason that the Xyce solution is in agreement with the analytic and TCAD results, since the Fjeldly
[2] model utilizes the same steady-state solution as the analytic model. From the graph we note
that the Xyce response to changes in the generation function is a bit slower than that of the analytic
model.

We next compare the three models for the case where the time in Figure 9 is compressed by a factor
of 100, similar to the comparison shown in Figure 13 in the previous section. Figure 16 gives
the comparison in this case. Good agreement between the Sentaurus and analytical simulated
photocurrents is apparent, but the Xyce simulation shows a significant drop in the current with
respect to the other two models. In this case the photocurrent is no longer determined by the
steady-state solution and is not dominated by the nn+ region, since carriers from deep within
this region have not had time to diffuse to the nn+ boundary. From the graph we note a marked
improvement in using the analytic photocurrent model over the model employed in Xyce. The
initial differences between the analytic model and Sentaurus are likely due to the violation of the
boundary condition at the depletion zone and the simple analytic model employed to compute the
depletion zone photocurrent.
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Figure 15: Comparison of the photocurrent density from the 2222 computed using the Sentaurus
TCAD simulator, the analytic code, and the Xyce circuit simulator for the generation function
given in Figure 9.

We now compare the three models for the case where the time in Figure 9 is compressed by a
factor of 1000, which is shown in Figure 17. For this very short waveform, the agreement between
the Sentaurus and analytical simulated photocurrents is not quite as good, but within a factor of
20% for both the 5 V and 10 V biases. The photocurrent with both the Sentaurus and analytic sim-
ulations increases with time in a similar manner, reflecting increasing charge collection from the
n+ substrate. For the 5 V bias, the Xyce simulation peaks at less than 50% of the Sentaurus peak,
and does not increase significantly with time, since it is not based on a physical model in which
the percentage of charge collected may increase with time. For this short pulse, the photocurrent
is dominated by the depletion and n collector regions, and, as noted in the nn+ subsection, there
are significant differences between the TCAD and analytical excess carrier distributions in these
regions. Nevertheless, the analytic model demonstrates a significant improvement over the Fjeldly
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Figure 16: Comparison of the photocurrent density from the 2222 computed using the Sentaurus
TCAD simulator, the analytic code, and the Xyce circuit simulator for the generation function
given in Figure 9, time-compressed by a factor of 100.

model employed in Xyce.

Finally, we compare the three models for the case where the time in Figure 9 is expanded by a
factor of 10. This low-frequency generation function tests the steady-state photocurrent feature
of the three models. The photocurrent for the analytic and Sentaurus models is dominated by the
minority carrier photocurrent from the nn+ region. We would expect that the Xyce model would
also give accurate results for this generation function because it uses an exact steady-state diffusion
model. Figure 18 gives the comparison in this case, and we observe that all models predict the same
photocurrent and that this photocurrent has the same shape as the input generation function.
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Figure 17: Comparison of the photocurrent density from the 2222 computed using the Sentaurus
TCAD simulator, the analytic code, and the Xyce circuit simulator for the generation function
given in Figure 9, time-compressed by a factor of 1000.
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Figure 18: Comparison of the photocurrent density from the 2222 computed using the Sentaurus
TCAD simulator, the analytic code, and the Xyce circuit simulator for the generation function
given in Figure 9, time-expanded by a factor of 10.
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4 Conclusions

We presented a new analytic solution that determines the excess minority carrier density in an irra-
diated finite 1D reverse-biased pnn+ abrupt junction epitaxial diode. The solution was developed
by solving the ambipolar diffusion equation (ADE) for the excess carrier concentrations in the
undepleted nn+ region of a device using the finite Fourier transform technique. The use of finite
Fourier transforms to solve photocurrent problems was originally presented in reference [16] for a
device that did not include a subcollector.

For the present work, the ADE was adapted to include an n+ sub-collector region, and an epitaxial-
subcollector interface at the nn+ boundary. Boundary conditions, consistent with ohmic contacts
and current continuity at the epitaxial interface, were imposed to obtain the minority carrier density
from this region. An additional boundary condition, first suggested in reference [3], was used to
relate the excess carrier densities on either side of the (n-n+) interface. The resulting ADE for the
nn+ region was then solved for both the steady-state and transient cases.

The analytic excess minority carrier and photocurrent density solutions in the nn+ region are com-
posed of a closed-form steady-state term, and a transient term presented in the form of an infinite
series. The BVP from which these solutions were derived was solved using the finite Fourier trans-
form technique. The required eigenvalues and eigenfunctions were obtained by applying separation
of variables to the corresponding homogeneous BVP, leading to a composite Sturm-Liouville prob-
lem. The form of the eigenfunctions depended upon the device parameters, as did the eigenvalues,
which were determined by the zeros of a transcendental equation. Our steady-state photocurrent
solution was shown to approach other steady-state photocurrent solutions [3], [4] when the appro-
priate limits were applied.

The analytic solution was compared to TCAD device simulations for both an ideal and a realistic
device. The ideal device was a pnn+ diode, devised so that many of the assumptions inherent to
the analytic model—but not necessary for TCAD—were true. The purpose of this comparison was
to verify the validity of the analytic solution within the confines of its assumptions. The device
chosen for the realistic (non-ideal) case was a 2N2222 bipolar junction transistor (BJT). For this
case, comparisons were made to the Xyce circuit simulator in addition to TCAD. Xyce implements
the Fjeldly [2] model for photocurrent. The purpose of this comparison was to show how applicable
the new analytic solution could be for a realistic scenario, and also demonstrate its superiority over
previous, less mathematical, compact models for photocurrent.

In the ideal pnn+ diode case, comparison between TCAD simulations and the analytic excess
carrier density solutions of only the nn+ region of the diode, when it was irradiated and unbiased,
showed excellent agreement at low-level dose rates (less than 1×1010 rad(Si)/s) for both short and
long radiation pulses. In particular, the discontinuity at the nn+ interface was reproduced in the
TCAD simulations, giving credence to the use of the analytic solution boundary conditions shown
in equations (10) and (11). At levels of irradiation up to 1×1010 rad(Si)/s, the comparison showed
that the analytic photocurrent solution gives an acceptable approximation to the TCAD model if
the parameters are kept consistent. Additional nn+ region photocurrent simulations as a function
of increasing substrate width for a long-duration 1× 109 rad(Si)/s radiation pulse also showed
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superb agreement between the TCAD and analytic solutions. The excellent agreement between
analytic and TCAD photocurrents for both short and long radiation pulses demonstrated that our
analytic model may be used over a wide range of conditions without recalibration for changes in
pulse width.

The ideal diode case was extended by examining a complete pnn+ reverse-biased diode. In this
case, the analytic photocurrent solution requires the addition of the p and depletion region compo-
nents. Assuming a simple depletion current model, the analytic solution of [16], and approximat-
ing the width of the depletion region in the analytic solution from the pn diode approximation, we
again showed excellent agreement between the TCAD and analytic photocurrents for the model
case (less than 0.2% error for t > 0.4 ns).

For the non-ideal case of the 2222 BJT, the analytic model, again, had excellent performance
when compared with the TCAD and Xyce codes. The collector (n-type) region of the 2222 had a
much lower doping level than in the idealized model case, the result being a much larger depletion
region. In fact, for a −10 V bias on the base-collector diode, the pn depletion region began to
merge with the small depletion zone around the nn+ interface. Therefore, while the steady-state
excess minority carrier density calculated from the analytic model agreed well with the TCAD
simulation for the unbiased case, the agreement was not as good for the biased cases. Nevertheless,
photocurrents from the nn+ regions calculated for transient sawtooth radiation pulses with varying
frequencies had excellent agreement.

In addition to the nn+ region, results from the pnn+ region and full 2222 transistor were also exam-
ined. The response of the transistor in a tester circuit was simulated using both the TCAD and Xyce
codes. For a sawtooth pulse 6 µs in duration, all three codes showed nearly identical predictions
for the photocurrent. However, when the pulse was shortened to 60 ns, Xyce significantly under-
predicted photocurrent compared to the other two methods. The difference was even more severe
for a 6 ns pulse. In this case, the analytic model also deviated slightly from the TCAD simulation.
Nevertheless, the agreement was still much superior to the Fjeldly model used by Xyce. Finally,
in the near steady-state case of a 60 µs pulse, all three codes were essentially indistinguishable.

While the analytic model had an excellent match to almost all the TCAD simulations presented
in this report, it is possible that several factors could contribute to less accurate results for other
devices, as follows. First, we approximate the depletion width (W ) used in the analytic computation
of Jdepl utilizing the analytic formula for an abrupt pn junction diode. The depletion width for a
pnn+ junction diode is affected by the nn+ interface. Second, there is not an abrupt depletion
boundary in real devices. Despite issues with the depletion region approximation, they are not
significant for all devices, and for devices in which they are significant, it should be possible to
mitigate them with judicious use of calibration.

In summary, our analytic model showed excellent agreement with a commercial TCAD code for
the prediction of photocurrent in pnn+ diode structures. In the cases examined in this report, the
agreement was better than the Fjeldly [2] model currently used by Xyce. Though expected to be
slightly more computationally expensive than the Fjeldly model, we anticipate our analytic model
to be a superior solution for the fast and accurate calculation of photocurrent, and thus could be
the basis for an improved compact model for photocurrent.
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A Transient Excess Carrier and Photocurrent Solution
Development

In order to obtain the required eigenfunctions and eigenvalues for the finite Fourier transform pair
we begin with the (basic) separation of variables process, assuming a solution of the form u(x, t) =
X(x)T (t) in the corresponding homogenous versions of equations (6) and (7). The associated
composite Sturm–Liouville problem (SLP) consists of the D.E.:

D1X ′′− 1
τ1

X =−λX , 0≤ x≤ w1

D2X ′′− 1
τ2

X =−λX , w1 < x≤ w2

(A-1)

in conjunction with the boundary conditions:

X(0) = 0 (A-2)

X(w2) = 0 (A-3)

D1X ′(w−1 ) = D2X ′(w+
1 ) (A-4)

N1X(w−1 ) = N2X(w+
1 ) (A-5)

Note, for the corresponding T (t) = Ce−λ t component in the product solution(s) to decay equally
in both regions, the eigenvalue λ must be the same in both regions, and λ > 0. The two respective
characteristic equations for our SLP are

r2 +
[

λ

D1
− 1

D1τ1

]
= 0 , 0≤ x≤ w1

r2 +
[

λ

D2
− 1

D2τ2

]
= 0 , w1 < x≤ w2

(A-6)

Considering the three relevant intervals, we know that if λ ≤min{ 1
τ1
, 1

τ2
} both sets of roots are real,

and in this case it can be shown that there are no eigenvalues. Conversely, for λ > max{ 1
τ1
, 1

τ2
},

both sets of roots are complex and there are an infinite sequence of eigenvalues, which may be
found by expressing the general solution in the form:

X = A1 sin(γ1x) , 0≤ x≤ w1

X = A2 sin(γ2(w2− x)) , w1 < x≤ w2

(A-7)
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in which

γ2
1 = λ

D1
−α2

1 , γ2
2 = λ

D2
−α2

2 (A-8)

The above form of X automatically satisfies b.c.’s (A-2) and (A-3). Then to satisfy boundary
conditions (A-5) and (A-4), we require,

N1A1 sin(γ1w1) = N2A2 sin(γ2(w2−w1)) (A-9)

and

D1A1γ1 cos(γ1w1) =−D2A2γ2 cos(γ2(w2−w1)) (A-10)

writing these two equations in matrix form,[
D1γ1 cos(γ1w1) D2γ2 cos(γ2(w2−w1))
−N1 sin(γ1w1) N2 sin(γ2(w2−w1))

][
A1
A2

]
=

[
0
0

]
(A-11)

To obtain non-trivial solutions we require,

|M| = D1γ1N2 cos(γ1w1)sin(γ2(w2−w1))+

D2γ2N1 sin(γ1w1)cos(γ2(w2−w1)) = 0
(A-12)

However we also know, from (A-8) that

γ
2
2 =

D1

D2
(γ2

1 +α
2
1 )−α

2
2 (A-13)

Substituting (A-13) into (A-12) yields the transcendental equation from which the eigenvalues may
be found. If we label the solutions γ1,n , n = 1,2,3.., then the eigenvalues are given by

λn = D1(γ
2
1,n +α

2
1 ) , n = 1,2,3.. (A-14)

Associated with each eigenvalue, we may select the corresponding eigenvector, using (A-9), as:[
A1
A2

]
=

[
N2 sin(γ2(w2−w1))
N1 sin(γ1w1)

]
(A-15)

giving us the eigenfunctions

Xn(x) =


N2 sin(γ2,n(w2−w1))sin(γ1,nx) , 0≤ x≤ w1

N1 sin(γ1,nw1)sin(γ2,n(w2− x)) , w1 < x≤ w2

, n = 1,2,3, .. (A-16)
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The remaining interval, 1
τ1

< λ ≤ 1
τ2

(we assume 1
τ2

> 1
τ1

, because that is the case for a typical
device), over which it is possible to find eigenvalues is the one in which one set of roots are real,
but the other set are complex. Writing the general solution as,

X = A1 sin(γ1x) , 0≤ x≤ w1

X = A2 sinh(γ2(w2− x)) , w1 < x≤ w2

(A-17)

in which

γ2
1 = λ

D1
−α2

1 , γ2
2 = α2

2 −
λ

D2
(A-18)

and proceeding as in the previous case, we find that the equation

|M| = D1γ1N2 cos(γ1w1)sinh(γ2(w2−w1))+

D2γ2N1 sin(γ1w1)cosh(γ2(w2−w1)) = 0
(A-19)

determines whether or not any eigenvalues exist. We may derive a simple condition on the param-
eters, which enables us to exclude eigenvalues for 1

τ1
< λ ≤ 1

τ2
. In particular, by virtue of the fact

that |M|> 0 whenever 0 < γ1w1 <
π

2 , we may conclude no eigenvalues exist if D1π2

4w2
1
+ 1

τ1
> 1

τ2
. By

way of an example, for the parameter set given in Table 2 in Section 3.1 there are no non-trivial
solutions. However, if we lower the lifetime in the n+ region to τ2 = 2.0×10−9 s, then the length
of this interval is greatly increased, allowing the trigonometric functions in (A-19) to fluctuate over
a longer period. For this reduced lifetime, we do find one eigenvalue, λ = 3.08×108, and, conse-
quently, one eigenfunction of the form (A-17). For other parameter sets it is also possible for there
to be more than one eigenvalue, but only a finite number: missing such eigenvalues will lead to
an incomplete set of eigenfunctions and produce erroneous results. Dealing with these additional
eigenfunction(s) does not present any major problems. However, to simplify the following formu-
las we shall assume that the only eigenfunctions correspond to the case when λ > max{ 1

τ1
, 1

τ2
}.

The solution functions are orthogonal with respect to the weighted inner product

〈 f ·g〉=
∫ w1

0
f gdx+

N2

N1

∫ w2

w1

f gdx (A-20)

while the norm squared is given by,

〈Xn(x) ·Xn(x)〉 = [N2 sin(γ2,n(w2−w1))]
2 ∫ w1

0 sin2(γ1,nx)dx+

N2
N1

[N1 sin(γ1,nw1)]
2 ∫ w2

w1
sin2(γ2,n(w2− x))dx

Noting that the norm squared is not a function of x,

‖Xn‖2 = N2
2 sin2(γ2,n(w2−w1))

[
w1
2 −

sin(2γ1,nw1)
4γ1,n

]
+

N2
N1

N2
1 sin2(γ1,nw1)

[
w2−w1

2 − sin(2γ2,n(w2−w1))
4γ2,n

] (A-21)
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To solve the transient BVP we define the finite Fourier transform pair via

ūn(t) = 〈u(x, t) ·Xn(x)〉=
∫ w1

0
u(x, t)Xn(x)dx+

N2

N1

∫ w2

w1

u(x, t)Xn(x)dx (A-22)

with inversion formula

u(x, t) =
∞

∑
n=1

ūn(t)Xn(x)

‖Xn‖2 (A-23)

Applying this transform to our BVP, yields the ODE,

d
dt

ūn(t) =−λnūn(t)+wng(t) , n = 1,2,3... (A-24)

with initial condition ūn(0) = 0, and in which

wn = 〈1 ·Xn(x)〉 =
∫ w1

0 Xn(x)dx+ N2
N1

∫ w2
w1

Xn(x)dx

= N2

[
sin(γ2,n(w2−w1))

1−cos(γ1,nw1)
γ1,n

+sin(γ1,nw1)
1−cos(γ2,n(w2−w1))

γ2,n

] (A-25)

The solution of the relevant initial value problem is given by

ūn(t) = wn

∫ t

0
g(v)e−λn(t−v)dv (A-26)

Substituting equation (A-26) into equation (A-23) we obtain our general solution, representing the
excess carrier density within the undepleted nn+ region of the device.

u(x, t) =
∞

∑
n=1

wn

∫ t

0
g(v)e−λn(t−v)dv

Xn(x)

‖Xn‖2 (A-27)

The associated photocurrent is given by

Jpp(t) = qD1
∂u
∂x

∣∣∣
x=0

= qD1
∞

∑
n=1

wn
∫ t

0 g(v)e−λn(t−v)dv X ′n(0)
‖Xn‖2

(A-28)

For the case where g(t) = g (a constant) equation (A-27) reduces to

u(x, t) = g
∞

∑
n=1

wn
1− e−λnt

λn

Xn(x)

‖Xn‖2 (A-29)
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Observe

u(x, t) = g
∞

∑
n=1

wn

λn

Xn(x)

‖Xn‖2 −g
∞

∑
n=1

wn
e−λnt

λn

Xn(x)

‖Xn‖2 (A-30)

from which it can be readily seen, that

u(x,∞) = g
∞

∑
n=1

wn

λn

Xn(x)

‖Xn‖2 (A-31)

and so we may replace u(x,∞) =U(x) (say) with the formula obtained from substituting (18) and
(19) into (14) : the steady-state solution, giving us

u(x, t) =U(x)−g
∞

∑
n=1

wn
e−λnt

λn

Xn(x)

‖Xn‖2 (A-32)

The associated photocurrent is given by

Jpp(t) = qD1α1

[
A+gτ1−gN2

α1

∞

∑
n=1

wn
e−λnt

λn

sin(γ2,n(w2−w1))γ1,n

‖Xn‖2

]
(A-33)

For the case where the carrier generation rate is a step function,

g(t) =


g , 0≤ t ≤ t ′

0 , t ′ < t < ∞

(A-34)

equation (A-27) reduces to

u(x, t) =


U(x)−g

∞

∑
n=1

wn
e−λnt

λn

Xn(x)
‖Xn‖2 , 0≤ t ≤ t ′

g
∞

∑
n=1

wn
e−λn(t−t′)−e−λnt

λn

Xn(x)
‖Xn‖2 , t ′ < t < ∞

(A-35)

and the associated photocurrent is given by

Jpp(t) =


qD1α1

[
A+gτ1−gN2

α1

∞

∑
n=1

wn
e−λnt sin(γ2,n(w2−w1))γ1,n

λn‖Xn‖2

]
, 0≤ t ≤ t ′

qD1N2g
∞

∑
n=1

wn
e−λn(t−t′)−e−λnt

λn

sin(γ2,n(w2−w1))γ1,n

‖Xn‖2 , t ′ < t < ∞

(A-36)

We note that if there are any eigenvalues for the case when 1
τ1

< λ ≤ 1
τ2

, then the corresponding
eigenfunctions are (still) orthogonal to each other and the ones above w.r.t. to the same weighted
inner product (A-20), however, the formulas for ‖Xn‖2 and wn would have to be modified.
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B Limiting Behavior of Photocurrent Solutions

There are two limiting cases that serve as a check for the analytic photocurrent solution. Our
steady-state photocurrent should approach the exact steady-state solution given in [3] as w2→ ∞.
As a second check of our photocurrent solution, we observe that as the parameters in the substrate,
x ∈ [w1,w2], approach those of the lower-doped region (x ∈ [0,w1]), we expect our solutions to
approach that for a homogeneous region as published in [16]. In particular, the steady-state solution
for a constant pulse should approach the solution of [4].

B.1 Comparison with the Long, Florian, and Casey [3] Steady-State Solu-
tion

If we look at the case when w2→ ∞

A∞ = lim
w2→∞

g
N2

S2(w1)
S2(w1)

[D2τ2G′2(w1)−D1τ1G′1(w1)]−D2
S′2(w1)
S2(w1)

[N2τ2G2(w1)−N1τ1G1(w1)]

D1N2S′1(w1)−N1D2S1(w1)
S′2(w1)
S2(w1)

(B-1)

then using the results

lim
w2→∞

S′2(w1)
S2(w1)

=−α2 , lim
w2→∞

G′2(w1) = 0 , lim
w2→∞

G2(w1) = 1 (B-2)

it follows that

A∞ = g
N2 [−D1τ1G′1(w1)]+D2α2 [N2τ2−N1τ1G1(w1)]

D1N2S′1(w1)+α2N1D2S1(w1)
(B-3)

so

A∞ = g
−D1τ1G′1(w1)+D2α2τ2−D2α2

N1
N2

τ1G1(w1)

D1α1 cosh(α1w1)+α2
N1
N2

D2 sinh(α1w1)
(B-4)

hence

A∞ = g
D2α2

[
N1
N2

τ1 [e−α1w1−1]+ τ2

]
−D1τ1α1e−α1w1

D1α1 cosh(α1w1)+α2
N1
N2

D2 sinh(α1w1)
(B-5)
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This is equation (12) in [3]. As discussed previously, the transient solution in [3] is solved assuming
that there is no current from the n+ doped to the n region. Since our transient solution did not need
to make this assumption, we have not attempted to compare to this solution in the limit.

B.2 Comparison with the Stuetzer [4] Steady-State Solution

In this section we assume the parameters in the substrate, x ∈ [w1,w2] approach those of the epi-
taxial region (x ∈ [0,w1]). In this case, the steady-state photocurrent solution to a constant pulse,
g(t) = g, t ≥ 0, should approach that of [4]. We show this to be case by computing the limit of the
minority carrier photocurrent density at both the n contact (x = 0) and the n+ contact (x = w2). At
the n contact, from equation (14), and using the notation limn+→n to mean lim(n+ doping)→(n doping),
limD2→D1 , and limτ2→τ1 , simultaneously,

limn+→nJpp+(∞) = qD1α1 [limn+→nA+gτ1]

= qgLp

[
−sinh(α1(w2−w1))(e−α1(w2−w1)+e−α1w1)

sinh(α1w2)

+
cosh(α1(w2−w1))(e−α1w1−e−α1(w2−w1))

sinh(α1w2)
+1
]

= qgLp

[
1

sinh(α1w2)
(−1+ e−α1w2)+1

]
= qgLp

[
coth(α1w2)− 1

sinh(α1w2)

]
where we also use equation (18) and where Lp =

√
D1τ1 is the diffusion length. At the n+ contact,

beginning with equation (14), and using the same limit notation, we are again led to the same
equations as above. These equations both agree with the Stuetzer solution, equation (21) of [16],
when the ohmic field is assumed zero. This analysis serves as a mathematical validation for both
constants A and B. The TCAD results of section 3.1 serve as a further validation.
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C Evaluation of the Excess Carrier and Photocurrent
Densities for a General Piecewise Linear g(t)

Suppose that the generation function g(t) is given by a discrete data set: (ti,g(ti) = gi) , i =
0,1,2,3, ... in which ti+1− ti is small, (for all i). Then we can represent our data set with the
piecewise linear function

g(t) =


g0 +m0(t− t0) , 0≤ t ≤ t1
g1 +m1(t− t1) , t1 < t ≤ t2

...
g j−1 +m j−1(t− t j−1) , t j−1 < t ≤ t j

in which m j−1 =
g j−g j−1
t j−t j−1

Labelling the integral in equation (21) as In(t), it follows that at the end of the first time interval:
0 = t0 ≤ t ≤ t1.

In(t1) =
∫ t1

0 g(v)e−λn(t1−v)dv =
∫ t1

0 [g0 +m0(v− t0)]e−λn(t1−v)dv

= g0+m0(t1−t0)
λn

− m0
λ 2

n

−g0
e−λn(t1−t0)

λn
+m0

e−λn(t1−t0)

λ 2
n

(C-1)

Similarly

In(t2) =
∫ t2

0 g(v)e−λn(t2−v)dv = e−λn(t2−t1)In(t1)

+g1+m1(t2−t1)
λn

− m1
λ 2

n

−g1
e−λn(t2−t1)

λn
+m1

e−λn(t2−t1)

λ 2
n

(C-2)

And, continuing:

In(t j) = e−λn(t j−t j−1)In(t j−1)

+
g j−1+m j−1(t j−t j−1)

λn
− m j−1

λ 2
n

−g j−1
e−λn(t j−t j−1)

λn
+m j−1

e−λn(t j−t j−1)

λ 2
n

(C-3)

Therefore

u(x, t j) =
∞

∑
n=1

wnIn(t j)
Xn(x)

‖Xn‖2 (C-4)
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and the associated photocurrent is given by:

Jpp(t j) = qD1
∂u
∂x

∣∣∣
x=0

= qD1
∞

∑
n=1

wnIn(t j)
X ′n(0)
‖Xn‖2

(C-5)

hence

Jpp(t j) = qD1
∞

∑
n=1

wn
g j−1+m j−1(t j−t j−1)

λn

X ′n(0)
‖Xn‖2

+qD1
∞

∑
n=1

wn

[
e−λn(t j−t j−1)In(t j−1)−

m j−1
λ 2

n

]
X ′n(0)
‖Xn‖2

−qD1
∞

∑
n=1

wn

[
g j−1

e−λn(t j−t j−1)

λn
−m j−1

e−λn(t j−t j−1)

λ 2
n

]
X ′n(0)
‖Xn‖2

(C-6)

However, we also know that

∞

∑
n=1

wn

λn

X ′n(0)

‖Xn‖2 =

[
A
g
+ τ1

]
α1

with the definitions of A and α1 given in Section 2.1.

Therefore, we may replace the slowest converging sum with the above to obtain,

Jpp(t j) = qD1
[
g j−1 +m j−1(t j− t j−1)

][A
g + τ1

]
α1

+qD1
∞

∑
n=1

wn

[
e−λn(t j−t j−1)In(t j−1)−

m j−1
λ 2

n

]
X ′n(0)
‖Xn‖2

−qD1
∞

∑
n=1

wn

[
g j−1

e−λn(t j−t j−1)

λn
−m j−1

e−λn(t j−t j−1)

λ 2
n

]
X ′n(0)
‖Xn‖2

(C-7)
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