Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
EMPHASIS™/Nevada CABANA
User Guide Version 2.0

C. David Turner
Electromagnetics and Plasma Physics Analysis

William J. Bohnhoff
Jennifer L. Powell
Radiation Transport

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-1152

Abstract

The CABle ANAlysis (CABANA) portion of the EMPHASIS™ suite is designed specifically for the simulation of cable SGEMP. The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of different designs. This document provides user-specific information to facilitate the application of the code to cables of interest.
Acknowledgement

The authors would like to thank all of those individuals who have helped to bring CABANA to the point it is today, including Gary Scrivner and Wesley Fan for many useful theory and design discussions.
Contents

Acknowledgement .. 4
Contents .. 5
List of Figures .. 7
Introduction .. 9
Cable SGEMP Simulation Process .. 9
CABANA Results .. 11
CABANA Input File and Keywords ... 11
 Time / time history keywords ... 12
 Radiation-incidence keyword ... 13
 SPICE control keywords ... 14
 Section keywords .. 15
 CEPTRE data keywords .. 16
 Cable topology keywords .. 18
 Charge relaxation keyword ... 20
 Box/Cavity SGEMP Drive inclusion keywords .. 20
 Poisson solution keywords .. 21
 Framework-related keywords within the physics block ... 22
Framework Keywords ... 23
 Material-related keywords .. 23
 Simulation time and output control keywords .. 25
 Linear solver keywords .. 26
Follow-up Simulations with Stored Charge .. 27
Conclusion .. 28
References ... 29
Appendix A. CABANA output units ... 30
Appendix B. Complete CABANA input file ... 32
Appendix C. EXOSTRIP User Manual ... 34
Appendix D. Modifying the SPICE Deck .. 38
Distribution ... 40
List of Figures

Figure 1. Cable-SGEMP Simulation Process. .. 10
Figure 2. Typical CABANA physics keywords. ... 12
Figure 3. Non-normal incidence. .. 14
Figure 4. Typical material model descriptions ... 25
Figure 5. Typical simulation and output control keywords. 26
Figure 6. Typical solver control keywords. .. 27
Figure C-1 Generic EXOSTRIP Input File ... 34
Figure C-2 RG02 Coaxial Cable ... 36
Figure C-3 Example EXOSTRIP Input File for RG02 Cable 36
Introduction

EMPHASIS™/Nevada CABLE ANALYSIS (CABANA) [1] solves the electrical portion of a cable system-generated electromagnetic pulse (SGEMP) simulation. It takes specific results from the deterministic radiation-transport code CEPTRE [2] as sources and computes the resulting electrical response to an arbitrary cable load. The cable geometry itself is also arbitrary and is limited only by the patience of the user in meshing and by the available computing resources for the solution. The CABANA simulation involves solution of the quasi-static Maxwell equations using finite-element method (FEM) techniques [1].

The CABANA sources required from CEPTRE are:

1) CHARGE_OFF_CONDUCTORS, the net charge knocked off each cable internal conductor (supplied implicitly by CEPTRE),
2) CHARGE deposited into each finite element, and
3) ENERGY_DEPOSITION at each element node

These data are written to the CEPTRE output in EXODUSII [3] format suitable for reading into CABANA. Since CABANA is written in MKS units, it expects the CEPTRE results in units of Coulomb/C/m for both CHARGE_OFF_CONDUCTORS and CHARGE. The units of ENERGY_DEPOSITION are expected to be Rads (dielectric).

The sources produced by CEPTRE for CABANA are not time dependent. Instead, they represent the total integrated values over the specified radiation pulse. CABANA applies the time dependence to the simulation by assuring, for example, that the total charge in a given element is applied over the specified pulse shape.

Cable SGEMP Simulation Process

The cable SGEMP simulation process is shown in Fig. 1. The cable must first be modeled and meshed with using 2D or 3D-periodic unstructured elements suitable for CEPTRE and CABANA. This is an involved process and is described in the CEPTRE user guide [4]. These two types of elements are associated with the two CABANA simulation modes: 2.5D-mode for 2D cable cross section structures and 3D-mode for 3D-periodic cable structures. Examples of 3D-periodic structures are twisted-shielded pair or cables with braided cable shields where the shield breaks can be modeled as approximately periodic.

The critical aspects of the mesh for CABANA are that boundaries are described by EXODUSII sidesets (either single- or double-sided) and that the elements are 2nd order, utilizing quadratic shape functions. This is required to obtain sufficient accuracy in the computation of electric field. The elements can be either 6-node triangles or 8-node quadrilaterals in 2D and 20-node hexahedra in 3D. The elements should also be
reasonably well shaped. Quadrilaterals with aspect ratios of up to approximately 80 can be handled, but expect run times to increase dramatically as the matrix becomes more ill-conditioned requiring significantly more iterations to converge to the required solution tolerance.

After CEPTRE solves the radiation-transport problem, the data for CABANA are written into an EXODUSII results file. Since CEPTRE is required to mesh the cable conductors but CABANA has no need for this mesh, it is removed along with the associated data using the EXOSTRIP utility (see Appendix C), which creates a “Genesis” file for CABANA. “Genesis” normally describes a mesh description file in EXODUSII format containing mesh only, no data, thus the quotation marks. This “Genesis” file, along with a CABANA input file is all that is required for a CABANA simulation. During this process, EXOSTRIP also converts the mesh coordinates from cm to m for CABANA.

Figure 1. Cable-SGEMP Simulation Process.
CABANA Results

The desired result from a CABANA simulation is normally the current delivered to the cable load(s). This is provided in HISPLT format under the name “LOAD-CURRENT” for a cable with a single inner conductor in units of Amps. For a cable with multiple inner conductors, the name is “LOAD-CURRENT-X” where “X” runs from 0 to N-1 where N is the number of inner conductors. The order of these load current results in the HISPLT file is determined by the order that the cable conductors are defined in the input file using the `conductor` keyword described in a later section.

Additionally, a running integral of all load currents is computed and dumped at the end of the simulation as “Conductor # Load Charge= value”, where in this case the “Conductor #” is the sideset id identified with the conductor on the `conductor` keyword line for that conductor.

Also monitored is the maximum global electric field magnitude throughout the simulation and is reported at the end of the simulation as “Global Max Magnitude Electric Field = value”.

If requested, additional results such as POTENTIAL, ELECTRIC-FIELD, CHARGE-DENSITY, and CONDUCTIVITY are dumped in the EXODUSII results file. A discussion of CABANA output units and their relationship to the CEPTRE simulation is presented in Appendix A.

CABANA Input File and Keywords

The CABANA input uses the standard NEVADA input file format, which includes keywords for debugging, physics type, solver control, output control, and more. Details of all of these except for the specific physics can be found in the ALEGRA/NEVADA users guide [5]. A complete input file for one of the CABANA regression problems is given in Appendix B.

The format for specifying cable System Generated ElectroMagnetic Pulse (SGEMP) physics (i.e., CABANA) and associated keywords is shown in Fig. 2. The keyword “cable sgemp” specifies CABANA physics to the code. Most of the remaining keywords are specific to CABANA and are described below.

For verification purposes, another keyword exists for CABANA physics: “cable sgemp verification, verify int”. This keyword instantiates a different CABANA object and is NOT used for normal cable simulations. The `verify` parameter specifies a particular analytic solution to be computed for comparison to the verification simulation.
For a single Poisson solution, the keyword “cabana poisson” instantiates another type of CABANA object for this purpose only. See the Poisson solution keywords section.

cable sgemp
 pulse shape, triangle, risetime 1.e-8, end
 initial time step, 5.e-10, end
 spice model, build
 number sections, 3, end
 section params, sec 1, len .1, exp, no
 section params, sec 2, len .45, exp, yes
 section params, sec 3, len .45, exp, yes
 default section length, .1
 load charge density, no
 load transport charge density, yes
 load dose, yes
 conductor, sideset 1, potential 1., rinpt 1.e8, rload 50.
 shield, sideset 21, potential 0.

block 1
 material 1
end

block 2
 material 1
end

 gradual startup factor 1.0
 maximum time step ratio 1.2
end

Figure 2. Typical CABANA physics keywords.

Time / time history keywords

pulse shape
Specifications the time history of the radiation pulse

\[
\text{pulse shape, type, [parameter real], [parameter real], end}
\]

Options for type and parameter(s) are:

steady_state, end
Unity for all time, useful primarily for verification

triangle, risetime real, [falltime real], end
If risetime only is given, rises linearly from zero to \(1/\text{risetime}\) at \(t = \text{risetime}\), in seconds (s), then falls linearly to zero at time \(2*\text{risetime}\). If risetime and falltime are given, rises linearly from zero to \(2/(\text{risetime} + \text{falltime})\) at \(t = \text{risetime}\) (s), then falls linearly to zero at time \(\text{risetime} + \text{falltime}\). Both have unit integrals.

square, width real, end
Amplitude $1/width$ at $t = 0$, remains constant until $t = width$ (s), jumps back to amplitude zero (integral is unity)

exponential_pulse, alpha real, end

$$\frac{1}{\alpha} e^{-\frac{t}{\alpha}}$$ (integral is unity)

double_exponential_pulse, alpha real, beta real, end

$$\frac{1}{\alpha - \beta} \left(e^{-\frac{t}{\alpha}} - e^{-\frac{t}{\beta}} \right)$$ (integral is unity)

initial time step

Specifies the beginning time step (s) for the simulation

initial time step, real, [gamma dot ratio real], [time step scale real], end

Gamma dot ratio and **time step scale** are optional parameters which, if included, will cause the time step to change to **initial time step * time step scale** after the **pulse shape** function falls below **pulse_shape_max * gamma dot ratio**, where **pulse_shape_max** is computed during the simulation. Typical values for **gamma dot ratio** and **time step scale** are 0.1 and 5.0, respectively. If these optional parameters are not included, the time step will remain constant at **initial time step** for the entire simulation.

Radiation-incidence keyword

By default, CABANA applies the cable excitation as if it were planar, normally incident broadside to the cable sections. In this case, all cable sections are excited simultaneously. The following keyword can be used to change the angle of incidence as shown in Fig. 3 for a three-section cable. Here, the cable-section excitations are staggered by the appropriate retarded time based on the timing at the section centers. The user should keep in mind also that the “load” end of the cable is the end on the right in Fig. 3. Therefore, if it is desired to have the excitation plane strike the load-end first, the angle should be negative. Also in Fig. 3, l_0 is the cable origin, either the left end (for θ positive) or the right end (for θ negative).

nonnormal incidence

Specifies non-normal planar incidence with angle angle from normal.

nonnormal incidence, angle real

The **angle** is the angle θ in Fig. 3, where $-90 < \theta < 90$.

13
Figure 3. Non-normal incidence.

SPICE control keywords

spice model

Specifies how SPICE is utilized and the origin of the spice model deck for the simulation

spice model, spice_option

Options for *spice_option* are:

NO

SPICE not used in simulation

USE

Lumped-parameter SPICE deck will be read from file

BUILD

Lumped-parameter SPICE deck will be created and written to a file during startup

Generally, the initial simulation for a given cable geometry is accomplished using the **BUILD** option which writes the SPICE deck to a
file (see **spice file** keyword below). If custom changes are desired to this SPICE model for subsequent simulations, the file can be edited and the USE option invoked thereafter. See Appendix D.

spice file

Specifies the filename from which to read the SPICE model deck if “**spice model, USE**” is specified or the file to which to write the SPICE deck if “**spice model, BUILD**” is specified.

spice file, “filename”

filename is an asci string and the quotes are required. If **spice file** is not specified, the SPICE deck is either read from or written to the default filename *problem_name.in*. Note that this file, either the default or that specified by **spice file**, will be OVERWRITTEN for the next simulation if it is left in place on the file system.

spice step fraction

Specifies the fraction of the initial time step (see **initial time step** keyword) which SPICE will use as a maximum internal time step.

spice step fraction, real

The default is 0.1. In some cases, it is necessary to increase this value to something like 0.5 to allow SPICE to converge correctly. If such a SPICE error occurs, the error is trapped and the user is notified to modify this value.

Section keywords

number sections

Specifies the number of sections to divide the cable length into for a 2.5D simulation and optionally specifies the lengths of each section. However, for a large number of sections, the line length may exceed the maximum. In this case, use multiple of the below **section params** keywords.

number sections, int, [sec int, len real], [sec int, len real], […], end

Each **[sec int, len real]** specifies the section number and length, in meters (m), of one of the sections. If a section is not specified, its’ length is defined by the **default section length** keyword below. In addition, it will be exposed to radiation by default (see **section params** below).
section params
Optionally specifies the lengths of each section and whether the section is exposed to radiation. The length parameter can be specified with the number sections keyword above if desired.

Each keyword of this type specifies the section number and length (m) of one section. Options for the exp parameter are “YES” (or “TRUE”) and “NO” (or “FALSE”). Note that the comma after exp must be present. If a section is not specified, its’ length is defined by the default section length keyword below and exp is “YES”.

default section length
Specifies the default length (m) of each cable section

default section length, real

multisection map
Optionally specifies the mapping of auxiliary radiation-transport results to cable sections for multi-section excitation

multisection map, radtrans_file “filename”, section_index int,[…], end

Lines of the above form are repeated for each auxillary CEPTRE simulation results file. Note that the use of this keyword is OPTIONAL. If no multisection map is specified, the default map is used: CEPTRE data stored in the simulation Genesis file is applied to ALL SECTIONS in the cable. The required parameters are:

radtrans_file: filename is an ASCII string for the name of a CEPTRE results (.exo) file

section_index (or shortened to section): an integer value in the range 1 thru number sections specifying each section the specified CEPTRE results (filename) will be applied to. Additional section, int combinations can be added before the end specifying other sections to receive data from this filename.

CEPTRE data keywords

load charge density
Specifies whether the CEPTRE data for CHARGE density contained in the simulation Genesis file is loaded before the first time cycle
load charge density, option

Options for option are:

NO (default)
- CHARGE not loaded up front, typical for actual cable simulation

YES
- CHARGE loaded up front, typical for verification simulation

load transport charge density

Specifies whether CEPTRE data for CHARGE density contained in the simulation Genesis file is prepared for loading into the simulation over the radiation pulse defined by **pulse shape**

load transport charge density, option

Options for option are:

YES (default)
- CHARGE prepared for loading, typical for actual cable simulation

NO
- CHARGE not prepared for loading, typical for verification simulation

load dose

Specifies whether CEPTRE data for ENERGY_DEPOSITION contained in the simulation Genesis file is prepared for loading into the simulation over the radiation pulse defined by **pulse shape**

load dose, option

Options for option are:

YES (default)
- ENERGY_DEPOSITION prepared for loading, typical for actual cable simulation

NO
- ENERGY_DEPOSITION not prepared for loading, typical for verification simulation or for turning off radiation induced conductivity (RIC)
load conductor current

Specifies whether the CEPTRE data for knock-off charge from each cable conductor, contained in the simulation Genesis file, is prepared for loading into the simulation over the radiation pulse defined by **pulse shape**.

load conductor current, option

Options for option are:

- **YES** (default)
 CONDUCTOR CHARGE prepared for loading, typical for actual cable simulation

- **NO**
 CONDUCTOR CHARGE not prepared for loading, typical for verification simulation

Cable topology keywords

conductor

Specifies each internal cable conductor

conductor, sideset int, [sideset int, ...]. potential real, rinpt real, rload real

Each internal cable conductor is specified with one of these keyword lines. The required parameters are:

- **sideset**: Specifies one (or more) sideset id(s) in the Genesis file defining this conductor

- **potential**: Specifies the initial potential, in volts (V), of the conductor (applies only to verification simulations, ignored for actual cable simulations)

Optional parameters are:

- **rinpt**: Specifies the resistance (ohms) to be applied to the “input” (often floating) end of the SPICE model.

- **rload**: Specifies the resistance (ohms) to be applied to the “load” end of the SPICE model. It is through rload that the main CABANA output, LOAD-CURRENT in the HISPLT file, flows.
If the optional cable loads are not specified, the defaults are \(r_{\text{inpt}} = 1.0 \times 10^8 \) ohms and \(r_{\text{load}} = 50 \) ohms. The user should keep in mind that although \(r_{\text{inpt}} \) can be anything, it is only the current through \(r_{\text{load}} \) which is monitored and output to the HISPLT file.

interface

Specifies each interface between dielectrics of differing conductivity properties.

interface, sideset int, [sideset int, ...], initial charge density real

Each cable dielectric interface is specified with one of these keyword lines. The required parameters are:

- **sideset**: Specifies one (or more) sideset id(s) in the Genesis file defining this interface.

- **initial charge density**: Specifies the initial charge density \((C/m)\) on the interface before the simulation begins (normally zero for cable simulations).

shield

Specifies the cable shield.

shield, sideset int, [sideset int, ...], potential real

The required parameters are:

- **sideset**: Specifies one (or more) sideset id(s) in the Genesis file defining the shield.

- **potential**: Specifies the shield potential \((V)\) for the simulation, normally zero for cable simulations.

The user is responsible for properly defining a conductor, interface, or shield with the correct number of sidesets. CABANA has no way of knowing that a portion of the boundary for say, a conductor, has been left out.

The sidesets defining these boundary entities may be either single or double sided. In practice, the proper use of the EXOSTRIP utility guarantees that only an interface can have a double-sided sideset definition.
Charge relaxation keyword

enforce relaxation limit
If conductivity is present, this keyword specifies whether an error is issued and the simulation halted in the case that an element relaxation time is too short relative to the time step chosen. Here the element relaxation time is defined as permittivity/conductivity. Based on convergence verification tests, it has been determined that good results are obtained as long as the element relaxation time is less than twice the time step. In other words, as long as there are at least two time samples per relaxation time.

enforce relaxation limit, option1 [, print warning, option2

Options for enforce relaxation limit are:

YES (default)
 Fatal error is issued and the simulation halted with information about the shortest elemental relaxation time

NO
 Simulation continues with or without warning

If enforce relaxation limit is yes, print warning is irrelevant. Otherwise, the options for print warning are:

YES
 Simulation continues with warning printed containing the shortest elemental relaxation time

NO (default)
 Simulation continues without warning

Box/Cavity SGEMP Drive inclusion keywords

Current sources can be included in the simulation to accommodate the forward coupling of box and cavity SGEMP drives during the cable simulation for a cable with a single inner conductor. These sources (one for box drive and/or one for cavity drive) are automatically inserted into the SPICE deck across the rnipt end of the conductor, as described by the conductor keyword. Typically, the drive is provided through a tabular function of samples from a box or cavity SGEMP simulation but it can be provided by one of the functional forms of the function keyword as well.
box drive

Specifies that a box-drive current source be created in the SPICE deck and that it be driven with the supplied function.

\textbf{box drive, function }int, [scale real shift real]

The tabular function can be scaled or shifted in time as necessary.

cav drive

Specifies that a cavity-drive current source be created in the SPICE deck and that it be driven with the supplied function.

\textbf{cav drive, function }int, [scale real shift real]

The tabular function can be scaled or shifted in time as necessary.

Poisson solution keywords

\textbf{Poisson solution}

Specifies a single Poisson solution and exit

\textbf{Poisson solution, charge density }real, \textbf{results file} “filename”

The required parameters are:

\textbf{charge density:} Specifies a uniform charge density (C/m²) in the elements

\textbf{results file:} ASCII file to which the resulting element electric fields are written

The boundary conditions for the solution are specified using the conductor keyword above.

\textbf{export results}

Specifies that the resulting element electric fields are to be exported for a subsequent 3D \textbf{UTDEM} simulation
export results, genesis file “filename”, sideset int

The required parameters are:

genesis file: 3D Genesis file for results export

sideset: Sideset in Genesis file to store results with

This Genesis file and sideset must be the same used to generate the 2D mesh for the Poisson solution in the first place using the UTDEM Sideset Extractor physics option in EMPHASIS™.

The poisson solution requires the framework keyword **termination cycle = 1** to be specified. This ends the simulation after an single solve as desired.

Framework-related keywords within the physics block

These keywords are really framework keywords [5] and must be placed within the physics definition keyword block.

block

Define a finite-element block

block int material int

Relates the mesh block id **block** to material definition **material**

function

Define a user-defined function for use by the **source** keyword

function int

time0 value0

time1 value1

time2 value2

.

end

function int gaussian, scale real shift real width real

*scale \times \exp \left(-\left(\frac{(t - shift)}{width}\right)^2\right)
\textbf{function} \textit{int double} exponential, \textit{scale real shift real alpha real beta real scale} \times (\exp(-alpha \times t) - \exp(-beta \times t)), \quad t > 0

\textbf{function} \textit{int sin squared, scale real shift real width real}
\textit{scale} \times \sin^2 \left(\frac{\pi \times t}{\text{width}}\right), \quad 0 < t < \text{width}

\textbf{function} \textit{int triangle, scale real shift real width real}
\textit{scale} \times \left(\frac{t}{\text{width}/2}\right), \quad 0 \leq t < \text{width}/2
\textit{scale} \times \left(1 - \frac{1}{\text{width}/2} (t - \text{width}/2)\right), \quad \text{width}/2 \leq t < \text{width}

\textbf{function} \textit{int sine, scale real shift real frequency real}
\textit{scale} \times \sin \left(frequency \times t + \text{shift}\right)

\textbf{gradual startup factor}

Factor by which the initial time step is multiplied, default is 0.01

\textbf{gradual startup factor real}

Gradually increases the initial time step. For CABANA, the value is normally set to 1.0.

\textbf{maximum time step ratio}

Maximum ratio by which a time step may grow in a given cycle

\textbf{maximum time step ratio real}

Gradually increases the time step from the old to the new value. This effects CABANA when \textit{time step scale} > 1.0 on the \textit{initial time step} line.

\textbf{Framework Keywords}

These keywords are framework keywords [5] which are required for a successful CABANA simulation.

\textbf{Material-related keywords}
material

Define a material model for a material

```material int
  model int
  model int
  ...
end```

Relates the material `material` to material model(s). For CABANA only one model applies to each material.

model

Define a material model

```model int string
 [parameter real]
 [parameter real]
 ...
end```

Relates the material model `model` to a specific model name defined by the name `string`.

Options for `string` and `parameter(s)` are:

- **RIC Electrical**
  ```
  eps real
  mu real
  sigma0 real
  coefficient real
  exponent real
  end```

- **HP Gas Electrical**
  ```
 eps real
 mu real
 sigma0 real
 density real
 water_fraction real
 end```
where ε is the relative permittivity of the medium, μ is the relative permeability of the medium, and σ_0 is the initial or dark conductivity (Mho/m) of the material.

The radiation-induced conductivity (RIC) model [7] takes the following form:

$$\sigma = \sigma_0 + \varepsilon K \gamma^e$$

where σ is the conductivity in Mho/m, σ_0 is the dark conductivity in Mho/m, ε is the permittivity in Farad(F)/m, K (coefficient) is in ((Mho/F)/(Rad/s)), γ is the dose rate in Rad/s, and e is the exponent parameter. Typical values for kapton are $\varepsilon = 3.5 \varepsilon_0$, $K = 3.23 \times 10^{-6}$, and $e = 0.95$.

The high-pressure (HP) gas model is described in [8][9]. The independent variables in the model are density (kg/m3) and water_fraction, nominally 1.23 and 0.02, respectively.

Example input file fragments for these model specifications are shown in Fig. 4.

Model 1 RIC Electrical
eps 2.
mu 1.
sigma0 1.e-3
coefficient 3.23e-6
exponent 0.95
end

Model 2 HP Gas Electrical
eps 2.
mu 1.
sigma0 0.
density 1.23
water_fraction 0.02
end

Figure 4. Typical material model descriptions.

Simulation time and output control keywords

Typical simulation time and output control keywords are shown in Fig. 5.

$\text{termination time} = \text{real}$
Total time (s) for which to run the simulation

$\text{termination cycle} = \text{int}$
Total cycles for which to run the simulation
emit screen, cycle interval = int
Print status line to standard out every cycle interval cycles

emit plot, cycle interval = int
Write plot variables to exodus file every cycle interval cycles

emit hisplot, cycle interval = int
Write global variables to hisplt file every cycle interval cycles

plot variable
registered-variable name
registered-variable name
...
end

Valid plot variables for CABANA are potential, electric_field, charge_density, vis_face_charge_density (interface charge density), econ (conductivity) (from RIC and HP Gas material model), and electron_concentration, negative_ion_concentration, avalanche_rate, attachment_rate (from HP Gas material model)

termination time = 1.e-8
emit screen, cycle interval = 1
emit plot, cycle interval = 10
emit hisplt, cycle interval = 1
plot variable
potential
electric_field
charge_density
vis_face_charge_density
econ
electron_concentration
end

Figure 5. Typical simulation and output control keywords.

If plot variables are not desired the “emit plot” line can be omitted. If plot variables are desired but not at frequent intervals, the cycle interval should be set to large values to avoid exceedingly large exodus files.

Linear solver keywords

Typical linear solver keywords, in this case for AZTEC [6], are shown in Fig. 6. In this case, conjugate gradient (cg) is specified with no preconditioning but with symmetric diagonal scaling. No output is requested from AZTEC after each solve to a tolerance
level of 1.e-9 with a maximum number of cg iterations set to 1000 (default is 500). The “polynomial order” should always be set to “1” for efficiency.

```aztec
  solver,  cg
  precond, none
  scaling,  sym_diag
  output, none
  tol = 1.e-9
  polynomial order, 1
  max iterations, 1000
end
```

Figure 6. Typical solver control keywords.

Follow-up Simulations with Stored Charge

It may be desirable to do a series of simulations where the stored charge remaining in the dielectric from previous simulations is used as an initial charge distribution for subsequent simulations. This can be accomplished with CABANA by utilizing the restart capability of the framework. The procedure is as follows:

Add the following restart keywords to the initial input file:

```plaintext
  restart dumps, 1
  emit restart, cycle interval = int  OR
  emit restart, time interval = real
  read restart dump = -1
```

The first indicates that only one restart dump is saved as the simulations progress. The second tells the framework to emit a restart dump either every cycle interval cycles or every time interval seconds. The third says that upon restart, the framework should read and load data from the latest restart dump available. In the case of the initial simulation of the series, the user should verify that no restart dumps exist in the directory and the simulation will then start at time=0. as desired. Restart dumps are written to files in the format: problem_name.dmp.restart_number.

For subsequent simulations, the user must change the termination time to have a later termination time for the next simulation. With this change, the follow-on simulation will begin at the time of the final restart dump from the previous simulation after loading the residual dielectric charge. In addition, the original gen file can be optionally replaced at this time with a new one having the identical mesh description but containing a different
set of radiation-transport results. The user is also free to change other simulation parameters such as pulse shape, time step, etc.

A key assumption in this process is that the SPICE circuit model is completely discharged after each simulation in the series, since no SPICE state is saved. This requires that each simulation be run until such time as this is essentially the case, i.e., all cable reflections have subsided and a reasonably steady-state condition has been reached.

Conclusion

This document, along with the user guides for a modeling and meshing tool such as I-DEAS, the radiation-transport code CEPTRE, and the exodus-file stripping tool EXOSTRIP should allow the user to successfully utilize CABANA to simulate the cable SGEMP response of an arbitrary cable geometry. To gain experience, the CABANA regression suite contains several realistic cable simulations, both 2.5D and 3D. Although these do not have realistic radiation-transport data in their Genesis files, the data does adequately exercise the algorithms in the code and fully demonstrates the cable simulation.
References

8. Tom Stringer, ITT Corp., private communication.

Appendix A. CABANA output units

The units associated with the CABANA output depend on the source normalization applied during the CEPTRE simulation. Assume that the source intensity is F cal/cm2 with an average spectral energy of E MeV/photon. CEPTRE source normalization multiplies the source intensity F by

$$\frac{2.61 \times 10^{13} (MeV/\text{cal})}{E(\text{MeV/photon})}$$

yielding the fluence in photon/cm2. With this normalization, the load currents from CABANA are in units of Amps (A). Without this normalization, the load currents are in units of A/(photon/cm2). Centimeters appear here because CEPTRE is written in CGS units.

The units of other possible CABANA outputs are V for potential, V/m for electric field, C/m3 for charge density, and mho/m for conductivity.
Intentionally Left Blank
标题
CABANA: Coax w/coarse quad8 mesh

$ The following two lines should be specified instead of CABLE SGEMP
$ if a verification test is desired rather than a normal simulation
$CABLE SGEMP VERIFICATION
$VERIFY, 1
CABLE SGEMP
pulse shape, triangle, risetime 1.e-9, end
initial time step, 1.e-10, end
spice model, build
number sections, 1, end
default section length, .1
load charge density, no
load transport charge density, yes
load dose, yes
conductor, sideset 1, potential 1., rinpt 1.e8, rload 50.
shield, sideset 21, potential 0.

block 1
 material 1
end

block 2
 material 1
end

gradual startup factor 1.0
maximum time step ratio 1.2
end

aztec
 solver, cg
 precond, none
 scaling, sym_diag
 output, none
 tol = 1.e-9
 polynomial order, 1
end

units, si
Execution control

termination time = 1.e-8

Output control

emit screen, cycle interval = 1
emit plot, cycle interval = 1
emit hisplt, cycle interval = 1
plot variable
 potential
 electric_field
 charge_density
end

Material models

Material 1
 Model 1
end

Model 1 RIC Electrical
 eps 2.
 mu 1.
 sigma0 1.e-3
 coefficient 3.23e-6
 exponent 0.95
end

$ Expect some Aztec "loss of precision" warnings due to low Aztec tolerance
expect 0 errors ? warnings

crt: off
exit
Appendix C. EXOSTRIP User Manual

Introduction
The EXOSTRIP utility is designed to remove the cable conductor element blocks from a CEPTRE Exodus output file. CEPTRE is required to mesh these cable conductors but CABANA does not process this mesh. EXOSTRIP removes the cable conductors along with the associated data and creates a “Genesis” file for CABANA. “Genesis” normally describes a mesh description file in EXODUSII format containing mesh only, no data, thus the quotation marks. Like CEPTRE, EXOSTRIP exists in the NEVADA framework and running this utility requires a “runid.inp” input file and a similarly named CEPTRE Exodus output file, “runid.gen”. Figure C-1 depicts a generic EXOSTRIP input file which should look very familiar to the user as it follows the input file structure of CEPTRE.

```
$ QA comments

$ Debug modes requested by user
DEBUG MODE: LOCATION $ An Example Debug Mode

$Execution Control Section
Title
A generic input file for EXOSTRIP

$Exostrip Section
EXOSTRIP

$ EXOSTRIP Keywords

END $ of the Exostrip

$ Execution Control Specifications
TERMINATION CYCLE 1

$ End of Problem Specifications
EXIT

$ Everything below the EXIT keyword is ignored
```

Figure C-1 Generic EXOSTRIP Input File

EXOSTRIP Keywords
The EXOSTRIP utility specification is enclosed in the keyword group:

```
EXOSTRIP
$ EXOSTRIP subkeywords
END
```
There is only one EXOSTRIP keyword group which tells EXOSTRIP what element blocks, node sets and side sets to remove from the Exodus file it is processing.

STRIP EXODUS

- **BLOCK (int)**: $ list all blocks separated by comma
- **NODESET (int)**: $ list all node sets separated by comma
- **SIDESET (int)**: $ list all side sets separated by comma

END

The **STRIP EXODUS** keyword describes the Exodus entities to strip from the Exodus file. All conductor element blocks to be stripped are identified with the subkeyword **BLOCK** followed by the ID number. All node sets and side sets that are NOT associated with dielectric material in the cable must be stripped as well. The node sets to be stripped are identified with the **NODESET** keyword followed by the node set ID number. Users should note that node sets are not used by CABANA, so EXOSTRIP usually strips ALL node sets from the mesh. The side sets to be stripped are identified with the **SIDESET** subkeyword followed by the side set ID number.

The **CONVERT CAVITY SGEMP DATA** keyword describes which side sets in the Exodus file contain SCEPTRRE radiation-transport moment-expansion data describing surface emission angular flux. The number of desired theta (polar angle) and phi (azimuth angle) bins must also be supplied. These data will be converted to PFF format and exported for use by EMPHASIS UTDEM-PIC. The sub keywords can be provided in any order.

CONVERT CAVITY SGEMP DATA

- **SIDESET (int int …)**: $ list all side sets to be converted
- **THETA BINS (int)**: $ number of theta bins from theta = 0 - π/2$
- **PHI BINS (int)**: $ number of phi bins from phi = 0 - 2\pi$

Example EXOSTRIP Input File

Figure C-2 depicts an example RG402 coaxial cable with the element block, side set and node set ID numbers. The conductors in this cable are element blocks 1 (Copper), 3 (Silver), 4 (Copper) and 5 (Steel). Side sets 1, 4 and 5 are not associated with the dielectric region in element block 2 (Teflon) and need to be removed. All node sets need to be removed for CABANA. The EXOSTRIP input file for this cable is given in Figure C-3.
Figure C-2 RG402 Coaxial Cable

```
$------------------------BEGIN_QA------------------------$
$  RUNID:  rg402$
$  $
$------------------------END_QA------------------------$

TITLE
EXOSTRIP: RG402 COAXIAL CABLE EXAMPLE

$$$$$$$$$$$$$$$$$$$$$$ PHYSICS OPTIONS $$$$$$$$$$$$$$$$$$$$

EXOSTRIP

  STRIP EXODUS, BLOCK 1, BLOCK 3, BLOCK 4, BLOCK 5,
       NODESET 1, NODESET 4, NODESET 5,
       SIDESET 1, SIDESET 4, SIDESET 5,
       END

END

$$$$$$$$$$$$$$$$$$$$$$ EXECUTION CONTROL $$$$$$$$$$$$$$$$$$$$

TERMINATION CYCLE = 1

EXIT

Figure C-3  Example EXOSTRIP Input File for RG402 Cable
Running EXOSTRIP

To run EXOSTRIP use the Exostrip script provided with your distribution:

```bash
$ Exostrip runid
```

The stripped “Genesis” file created by EXOSTRIP is written to `runid.Stripped.gen`. For the example in Figure C-3 with a runid of rg402:

```bash
$ Exostrip rg402
```

The command above will create a file named `rg402.Stripped.gen`. This file becomes the input “Genesis” file for a subsequent CABANA run.
Appendix D. Modifying the SPICE Deck

As noted in the SPICE control keywords section, the spice model, build keyword is typically used in an initial simulation to generate the SPICE deck for a cable. For a subsequent simulation, if the user wishes to modify the cable load to something more complicated than the simple resistive load added by the conductor keyword then the SPICE deck must be edited manually. For subsequent simulations, the user must use the spice model, use keyword to have the code read the modified deck. In addition, if the user desires to change the name of the SPICE deck from the default name of problem_name.in, the spice file, “filename” keyword must be used to specify the new name.

Modifications to the SPICE deck follow standard SPICE conventions. For example, if a complicated load is to be connected to the cable then the load SPICE circuit description can either be inserted directly into the file, using unique node numbers and device names of course, or a SPICE .SUBCKT can be used.

The first step in modifying the file for new load(s) is to determine what nodes the load(s) are connected to. The SPICE deck generation algorithm places resistive loads on each end of each cable conductor. Referring to the conductor keyword, the rinpt value is placed on the “input” end of the cable and the rload value is placed on the “output” end. The “output” end is the “LOAD-CURRENT” which is monitored and output by the code in the problem_name.his file. The SPICE solver simply returns the node voltage across the output “load”, assumed to be a simple resistor. The return value is then divided by the load resistance to determine the load current.

The algorithm used for numbering the loads is as follows. Assume the cable has N conductors divided into M sections. The “input” load on the first conductor (the first conductor keyword line in the problem_name.inp file) is R[1]. The “output” load on the first conductor is R[2]. The input load on the second conductor is R[3] and the output load is R[4], etc, down to the final conductor N which has input load R[2N-1] and output load R[2N]. Therefore, for the nth conductor, the input load is on node (n-1)(M+2)+1 and the output load is R[2n]. Note that the square brackets are used here only for clarity and are not in the actual SPICE deck, problem_name.in.

To determine how to modify the return voltages to provide the desired value, the nodes to which the loads connect must be determined. The automated resistive loads always connect between some floating node and ground, which is always node 0. The input load on the first conductor connects to nodes 1 and 0 and the output between nodes M+2 and 0. On the second conductor, the input load is on node (M+2)+1 and the output load node 2(M+2) down to the final conductor N where the input load is on node (N-1)(M+2)+1 and the output load on node N(M+2). Therefore for the nth conductor, the input load connects to node (n-1)(M+2)+1 and the output load to node n(M+2).
At the end of the SPICE deck, there is a series of .PRINT TRAN V(i), V(j), V(k), … lines. Presently, only the output load voltage, V( n(M+2) ) for each conductor n, is monitored by the code. This voltage is divided by the \texttt{rload} value on the appropriate \texttt{conductor} keyword line to determine the load current. If this happens to be the desired result across the new load or subcircuit, then nothing need be done in the .PRINT TRAN section. To have the code only report the voltage, then change the \texttt{rload} value to 1 and remember that the LOAD-CURRENT in the \texttt{problem_name.his} file is actually load voltage.

If it is desired to have the voltage between any two nodes instead, then replace each of the V( n(M+2) )’s, for each conductor n, with something like V(7,5) for example which specifies the voltage between nodes 7 and 5. Again, if the result desired is simply this voltage difference then change the \texttt{rload} value to 1 for that conductor.

A SPICE \texttt{.SUBCKT} can be used if the voltage or voltage difference desired is on or between the external nodes of the subcircuit. If results are required from inside the subcircuit, then the circuit must be placed into the SPICE deck inline so that the necessary nodes are global. The desired nodes can then be referred to in the .PRINT TRAN line(s).
## Distribution

<table>
<thead>
<tr>
<th>MS</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS1169</td>
<td>J. R. Lee</td>
<td>01300</td>
</tr>
<tr>
<td>MS1179</td>
<td>L. Lorence</td>
<td>01340</td>
</tr>
<tr>
<td>MS1179</td>
<td>W. C. Fan</td>
<td>01341</td>
</tr>
<tr>
<td>MS1179</td>
<td>W. J. Bohnhoff</td>
<td>01341</td>
</tr>
<tr>
<td>MS1167</td>
<td>E. F. Hartman</td>
<td>01343</td>
</tr>
<tr>
<td>MS1152</td>
<td>K. Cartwright</td>
<td>01652</td>
</tr>
<tr>
<td>MS1152</td>
<td>C. D. Turner</td>
<td>01652</td>
</tr>
<tr>
<td>MS0899</td>
<td>Technical Library</td>
<td>9536 (electronic copy)</td>
</tr>
</tbody>
</table>