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Abstract

Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical
systems for many years. Although existing model reduction techniques are capable of providing
huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups
are often not obtained when performing transient analysis on the systems, particularly when coupled
with other circuit components. Reduced system size, which is the ostensible goal of MOR methods,
is often insufficient to improve transient simulation speed on realistic circuit problems. It can be
shown that making the correct reduced order model (ROM) implementation choices is crucial to
the practical application of MOR methods. In this report we investigate methods for accelerating
the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
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Chapter 1

Introduction

Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical
systems for many years. Although existing model reduction techniques are capable of providing huge
speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are
often not obtained when performing transient response on the systems, particularly when coupled
with other circuit components. That is, computing Ĥ(s) = L̂T (sĈ + Ĝ)B̂ is extremely fast relative
to H(s) = LT (sC + G)B, while solving Ĉ ˙̂x + Ĝx̂ = B̂u for x(t) is slow compared to solving the
original system Cẋ+Gx = Bu. In this report we investigate methods for accelerating the simulation
of circuits containing ROM blocks using the circuit simulator Xyce [1, 2]

1.1 Model Reduction in Xyce

A linear circuit (e.g. RLC network) can be modeled using Modified Nodal Analysis (MNA) [3],
resulting in the following state-space model

Cẋ + Gx = Bu y = LT x. (1.1)

Here the state variables x correspond to node voltages and inductor currents. Standard projection
methods for model reduction approximate the state x using a linear combination of basis vectors,
x = V x̂, where x̂ are the state variables of the reduced model. Applying the projection approxi-
mation to system (1.1) and left-multiplying by the left-projection matrix W results in the reduced
model

Ĉ ˙̂x + Ĝx̂ = B̂u y = L̂T x̂ (1.2)

The projection matrices V,W are chosen such that the input-output behavior of the reduced model
matches the input-output behavior of the original system.

The reduced model can be thought of as an N-port circuit element that can be simulated by
itself, or connected to other, possibly nonlinear, circuit elements or blocks. Transient simulation of
the resulting system in Xyce uses a dynamic timestep scheme to integrate forwards through time.
The step size is chosen based on local truncation error approximations, and is roughly taken as

∆t = min
i

∣∣∣ α
dkxi

dtk

∣∣∣ 1
k (1.3)

where α is some constant and k is related to the order of the differencing scheme. For example,
when using trapezoidal rule, k = 3, so

∆t = min
i

∣∣∣ α
...
xi

∣∣∣ 1
3
. (1.4)
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1.2 Simulation Difficulties Arising from Reduced Model Blocks

Based on our experiments, there are two main reasons that transient simulation of the reduced
model is slow. First, the reduced model typically requires many more time steps. The standard
time integration routine in Xyce automatically determines the time step size based on estimations of
the local truncation error at each step. The size of the step is precisely tuned for circuit examples,
where the state values correspond to node voltages and branch currents that arise is common
circuits. Since the states in the reduced model correspond to linear combinations of states in the
large system, each reduced state by itself is physically meaningless, and therefore generally does not
take values in the range corresponding to standard voltages and currents. Second, although the size
of the reduced model matrices are smaller, the number of nonzeros is not as significantly reduced.
This is because C,G, B,L are typically extremely sparse, whereas Ĉ, Ĝ, B̂, L̂ are all extremely
dense. This makes the linear system solves at every time step (or at every Newton iteration, if the
system is nonlinear) more expensive.

In general, dense matrices, and state variables taking a wide range of values, should not cause
difficulties for a transient simulator. However, Xyce has been finely tuned to handle sparse circuit
problems, and therefore performance is sacrificed when considering other types of problems.
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Chapter 2

The Problems

First, we consider the problem of the simulator taking too many time steps during transient simu-
lation of a reduced model.

2.1 Dynamic Step Size Selection – Too many timesteps

As briefly explained in Section 1.1, the step sizes taken by the transient simulator are chosen based
on approximations of the local truncation error at each step. To better illustrate why the reduced
models cause the simulator to take too many time steps, we first look at two simple examples.

2.1.1 Case #1: Poorly scaled states

We begin with the original “large” system

d

dt

[
x1

x2

]
=

[
−1 0
0 −1

] [
x1

x2

]
y =

[
1 1

] [
x1

x2

]
. (2.1)

Using the following projection relation, this can reduced to a single state system as follows[
x1

x2

]
=

[
V1

V2

]
x̂,

[
V1

V2

]
=

[
10−9

10−9

]
,

[
U1

U2

]
=

[
109

109

]
(2.2)

Selecting x0 = 10−3 and simulating both the original large model and the reduced model for
one second yields the results shown in Figure 2.1. Note that although the models produce the same
solution, the reduced model reuiqres 10× more timesteps over the same time interval.

2.1.2 Case #2: High Frequency Junk

To see another, more subtle, case that can cause problems, consider the four-state “reduced” system

d

dt


x1

x2

x3

x4

 =


−λ φ 0 0
−φ −λ 0 0
0 0 −λ ω
0 0 −ω −λ




x1

x2

x3

x4

 , y =


1
1
1
1


T 

x1

x2

x3

x4

 . (2.3)
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Figure 2.1. Transient response of large system (2.1) and the
corresponding reduced model. Due to poorly scaled variables, the
reduced system required 10× more time steps than the large sys-
tem.

Here we are assuming this system is the result of a model reduction procedure, and we do not care
about the original large system from which it was created. From (2.3) we can see that the solution
will be oscillating decaying exponentials, and that x1, x2 are decoupled from x3, x4. In fact, if we
define the initial conditions as along with the initial condition

x1(0)
x2(0)
x3(0)
x4(0)

 =


η
η
γ
γ

 , (2.4)

then we can write the analytical solution as
x1(t)
x2(t)
x3(t)
x4(t)

 =


η e−λt [cos(φt) + sin(φt)]
η e−λt [cos(φt)− sin(φt)]
γ e−λt [cos(ωt) + sin(ωt)]
γ e−λt [cos(ωt)− sin(ωt)]

 . (2.5)

So the solution is two pairs of complex exponentials that oscillate at different frequencies but decay
at the same rate.

When simulating this system in Xyce, the timesteps will depend on the third derivatives with
respect to time of the analytic solution (2.5), which is

d3

dt3


x1(t)
x2(t)
x3(t)
x4(t)

 =


−ηλ3φ3e−λt [− cos(φt)− sin(φt)]
−ηλ3φ3e−λt [− cos(φt) + sin(φt)]
−γλ3ω3e−λt [− cos(ωt)− sin(ωt)]
−γλ3ω3e−λt [− cos(ωt) + sin(ωt)]

 . (2.6)
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To see what all of this means, plug in the following parameters

φ = 1 ω = 105 λ = 0.1 η = 10 γ = 10−2 (2.7)

The solution (2.5) becomes
x1(t)
x2(t)
x3(t)
x4(t)

 =


10 e−0.1t [cos(t) + sin(t)]
10 e−0.1t [cos(t)− sin(t)]

10−2 e−0.1t
[
cos(105t) + sin(105t)

]
10−2 e−0.1t

[
cos(105t)− sin(105t)

]
 , (2.8)

so that the output y(t) is a decaying oscillation at 1Hz, with a very small component on top
oscillating at 105Hz

y(t) = e−0.1t
[
20 cos(t) + 0.02 cos(105t)

]
(2.9)

The high frequency oscillation is 0.1% of the low frequency signal, and therefore adds a negligible
effect.

However, let’s look at the third derivatives of the solution and see how the simulator will select
the step sizes

d3

dt3


x1(t)
x2(t)
x3(t)
x4(t)

 =


−10−2e−0.1t [− cos(t)− sin(t)]
−10−2e−0.1t [− cos(t) + sin(t)]

−1010e−0.1t
[
− cos(105t)− sin(105t)

]
−1010e−0.1t

[
− cos(105t) + sin(105t)

]
 . (2.10)

It’s clear from (2.10) that the step size is going to be determined by the high frequency compo-
nents, because they are 12 orders of magnitude larger than the low frequency components. That is,
even though the high frequency signal is negligible, the simulator will try to take small timesteps
to capture the microsecond dynamics of its oscillations.

To really see how much the high frequency components affect step size, we will run a regular
transient simulation using dynamic timestepping, and then modify the timestepping routine slightly
so it ignores the high frequency components in the step size computation and run the transient
again. The results, shown in Figure 2.2, show that ignoring the high frequency components causes
the simulator to take just 51 steps, and captures the output accurately. However, including the
high frequency components causes the simulator to take almost 10, 000 steps – an increase by a
factor of 200!

In general we won’t have a problem where the states are nicely partitioned between the im-
portant components and unimportant components, so it won’t be so simple to determine what to
ignore. Also, we would prefer not to modify the simulator for each system we need to simulate,
and instead only modify the model we put into it.

2.2 Dense Matrix Blocks

Next, we consider the problem resulting from dense ROM blocks being inserted into the larger
system. The original state space model (1.1) is sparse because the state variables x are the node

13
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Figure 2.2. Transient simulation of system (2.3) using parame-
ters defined in (2.7).

voltages, and circuit elements only connect neighboring nodes. The reduced model results from
projection, which can be interpreted as a rotation of the coordinate system followed by truncation
of state variables. After rotation, the state variables no longer correspond to node voltages, so
there is no reason to expect the conservation equations to depend on a small number of the state
variables, which means the system matrices will be dense.
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Chapter 3

Solution # 1: Linear Transformation

One solution to the problems of poorly scaled variables and dense matrices is to transform the linear
ROM model to one that has properly scaled variables and sparser (or nicely structured) matrices.

3.1 Scaling the Variables

First, we consider the issue of state variables taking non-physical (or rather, non-circuit) values,
which causes the time-integrator to take too many steps. This time-stepping problem can be solved
by “simply” scaling the variables in the reduced model (the idea of scaling is simple, but determining
the scaling factors (efficiently) is non-trivial). Recall that the state variables in the reduced model
x̂ are related to the state variables of the original system x via x = V x̂. If x are the circuit state
variables (current, voltage), then the reduced variables x̂ should be the same order of magnitude
as x, i.e. |xi| ≈ |x̂i|. Suppose |xi| ≈ α for each element of x. We want to construct V such that
|x̂i| ≈ α as well. Given a state x, its image in the reduced space is x̂ = V T x, and therefore each
individual reduced state is the image of the large state x on each column of V, i.e. x̂i = V T

i x, where
Vi is the ith column of V . Thus, given a set of solutions x(t), the projection matrix V should be
chosen such that the state images in the reduced space are order of magnitude α, i.e. |x̂i| =≈ α.

Let β be a diagonal matrix such that V = Ṽ β scales each column Vi by βii. If Ṽ is the original
projection matrix (constructed, for instance, using moment matching), then we want to select the
βii such that

|x̂i| = |βiiV
T
i x| ≈ α (3.1)

From (3.1) we find that

β ≈ α

V T
i x

(3.2)

We assume that α is given from the start, and V is computed using standard model reduction
procedures, so the lone question is: what do we use for the state x. We are trying to find β
such that |x̂i| ≈ α for all times during transient simulation. If we know a transient solution
trajectory x(t) ahead of time, then those states would be a good choice from computing β as in
(3.2). However, we would like to avoid solving the original full system. But we can easily compute
X(jω), the frequency response of the system at a particular frequency. Given X(jω) in response
to a particular input u(t) = sin(ωt), we can compute the steady-state response in time-domain as
x(t) = |X(jω)| exp(j∠X(jω)ωt). Thus, |X(jω)| tells us the magnitude of the state x at steady-
state, and provides a good sample of the trajectory during transient simulation.

15



It is important to note that scaling the columns of V does not change the span of the projection
matrix, nor does it alter the frequency response of the resulting reduced model. See Section A for
more details on this subject.

To summarize, the algorithm for determining the projection matrix utilizing variable scaling is
as follows.

1. Compute nominal projection matrix Ṽ using any standard technique

2. Compute snapshots xj of the steady-state at several frequencies of interest ωj

3. Compute βj
ii = α

V T
i xj

4. Define βii as the average of βj
ii over j

5. Define V = Ṽ β

Based on example 2, an alternative approach would be to eliminate the negligible high-frequency
components from the system. However, these frequencies are determined by the eigenvalues/poles
of the system, and therefore modifying them would constitute modifying the transfer function /
frequency response of the system – which is what we are trying to avoid. Therefore, our only option
is a coordinate transformation.

3.2 Fixing Case #1 and Case #2

In order to fix the two previously presented examples, we apply the scaling procedure described
above. The first example can be fixed by simply scaling the reduced model variables, which is
equivalent to scaling the columns of the projection matrix. After scaling the projection matrices
to have unity norm, the resulting model now simulates in the same number of timesteps as the
original model, shown in Figure 3.1.

The second example can be fixed by scaling the variables using the procedure described above.
The resulting model now simulates in just 51 steps, which is the same number of steps taken when
explicitly ignoring the high frequency components, as shown in Figure 3.2.

3.3 Rotating the Coordinate System

The problem resulting from dense ROM blocks is a bit more complicated than the time-stepping
issue, but can be partially addressed using another change of variable. However, instead of simply
scaling the projection matrix columns, we will now apply a linear transformation to them. Specif-
ically, we want to transform W,V such that the reduced system matrices Ĉ, Ĝ, B̂, L̂ are sparse,
while ensuring we do not affect the accuracy of the ROM.

Consider the reduced order linear system

Ĉ ˙̂x = Ĝx̂ + B̂u, (3.3)

16
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Figure 3.1. Transient simulation of full model (blue circles) and
scaled reduced model (solid green line). Scaling the variables has
reduced the number of steps required for the reduced model by a
factor of 8.
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Figure 3.2. Transient simulation of unscaled reduced model
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the variables has decreased the number of required timesteps by a
factor of almost 200.
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and suppose it has purely real eigenvalues and permits the generalized eigenvalue decomposition
ĈT = ĜTD, where T are the eigenvectors and D contains the eigenvalues. Using the change of
coordinates x̂ = T x̃, we can rewrite (3.3) as

ĈT ˙̃x = ĜT x̃ + B̂u

Applying the generalized eigenvalue relation yields

ĜTD ˙̃x = ĜT x̃ + B̂u (3.4)

which we can premultiply by T−1Ĝ−1 to obtain

D ˙̃x = x̃ + (T−1Ĝ−1B̂)u (3.5)

What once was Ĉ is now the diagonal matrix D, and what once was Ĝ is now an identity ma-
trix. Thus, we have transformed the dense system (3.3) into a sparse (diagonal) system. After
solving (3.5) for x̃, we can obtain the solution to the original system via the transform x̂ = T x̃.

To see how this transformation can be absorbed into the projection matrix, we will rewrite (3.4)
after un-collapsing the projection

W T GV TD ˙̃x = W T GV T x̃ + W T Bu

(W T GV T )−1W T GV TD ˙̃x = (W T GV T )−1W T GV T x̃ + (W T GV T )−1W T Bu

Therefore, if V0 and W0 are the nominal projection matrices (that produce a dense reduced model),
we define V = V0T and W = W0(W T

0 GV0T )−T .

Although the previously described transformation sparsified the given example, there are two
important details that need to be addressed. First, it was previously assumed the system has purely
real eigenvalues. If that is not the case, then we cannot diagonalize the system while keeping the
matrices real. However, we can perform a generalized Schur decomposition (i.e. QZ decomposition)
to obtain quasi-upper-triangular matrices or quasi-diagonal matrices.

A larger problem, however, is that we are assuming the number of ports (i.e. inputs and
outputs) is small relative to the number of states in the original system. This means that B is tall
and skinny. If the number of ports is comparable to the number of states in the large system, then
B̂ will be dense and contain O(Nq) nonzeros. Unfortunately, it is impossible to simultaneously
sparsify Ĉ, Ĝ, B̂. This is sort of the whole point of model reduction – we are decreasing the order
of the system, but as a result, the ROM will be highly coupled (i.e. dense matrices). If we want the
states to be decoupled (sparse matrices), then the inputs must touch every state (dense B̂ matrix).
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Chapter 4

Solution #2: Two-level Solve

An alternative solution, instead of manipulating the reduced model system, is to solve the equations
corresponding to the reduced model separately. In this case we can use a different solver that can
efficiently handle the dense ROM blocks that are coupled in the larger sparse matrices. Additionally,
this avoids the problems caused by poorly scaled variables because the ROM states are now never
seen by the outer level solver. This is a linear version of the two-level Newton solve presented in [4].

4.1 Simple Illustrative Example

Consider two non-dynamical systems (e.g. resistor networks) connected by a single port, as shown
in Figure 4.1. This interconnected system can be modeled using KCL, resulting in the following

  

A  (x )
I

A  (x )1 2xu1
up

u2
2p

1

Figure 4.1. Example showing two loosely coupled (i.e. con-
nected by one port) system blocks, each with input sources.

system of state space equations F1

Fp

F2

 =

 A1 A1p 0
Ap1 Ap Ap2

0 A2p A2

 x1

xp

x2

−
 B1u1

Bpup

B2u2

 = 0. (4.1)

Here x1 ∈ RN are the internal variables of the first block, xp ∈ Rp are the port variables (in this
case p = 1), x2 ∈ Rq are the internal variable of the second block, A1 ∈ RN×N , A1p ∈ RN×p,
Ap1 ∈ Rp×N , Ap ∈ Rp×p, Ap2 ∈ Rp×q, A2p ∈ Rq×p, and A2 ∈ Rq×q. Let us further assume that A1,
A1p, and Ap1 are sparse, while A2 and A2p are dense, which would arise when the second block is
a reduced order model.
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Because the system contains a large sparse block and a large dense block, it would be inefficient
to use either a dense solver or a sparse solver. However, suppose we are only interested in solving
for the voltages in the first block (i.e. x), which is realistic if the second block is a reduced model.
Since the problem is weakly coupled (i.e. there are a small number of ports connecting the two
blocks), it is possible to eliminate the large dense second block from the system ahead of time,
resulting in a purely sparse system.

4.1.1 Intuitive Explanation

As shown in Figure 4.1, the two blocks are coupled through the current I. As it is written, this
current I depends on voltages in the first block, x1, and voltages in the second block, x2. However,
it is possible to develop an expression for I that depends only on the port voltage xp, and none
of the internal variables x2. Essentially we are going to replace the second block with equivalent
resistors between xp and ground.

The current I can be expressed as

I = Bpup + Ãpxp + B̃u2, (4.2)

where Ãp is the equivalent conductance of the second block, and B̃ are equivalent sources to
account for the sources that were connected to the second block. Since conductance relates changes
in voltage to changes in current, we can compute this expression as follows.

Ãp =
dFp

dxp
=

∂Fp

∂x2

∂x2

∂xp
+

∂Fp

∂xp

B̃ =
dFp

du
=

∂Fp

∂x2

∂x2

∂u

The equations Fp are just the conservation equations in the previous system and are known ex-
plicitly. Note that the term ∂Fp/∂up is Bp, which was separated out in (4.2) because it is already
available explicitly, so it is not present in B̃. The unknown terms here are ∂x2/∂xp and ∂x2/∂u,
which can be obtained by differentiating F2 with respect to xp and u

∂F2

∂xp
=

∂F2

∂x2

∂x2

∂xp

∂F2

∂u
=

∂F2

∂x2

∂x2

∂u

Solving for ∂w/∂v and ∂w/∂u and plugging into the previous expression, we find the equivalent
conductance and inputs as

Ãp = −∂Fp

∂x2

∂F2

∂x2

−1 ∂F2

∂xp
+

∂Fp

∂xp

B̃ = −∂Fp

∂x2

∂F2

∂x2

−1 ∂F2

∂u

These partial derivative terms can be extracted directly from system (4.1), resulting in

Ãp = −Ap2A
−1
2 A2p + Ap

B̃ = −Ap2A
−1
2 B2,
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which can each be solved using a dense solver.

Now that we have an expression for the current I that depends only on the port voltages xp

and inputs u, we can rewrite the original system of equations independent of x2 as[
A1 A1p

Ap1 Ãp

] [
x1

xp

]
=

[
B1u1

Bpup + B̃u2

]
. (4.3)

Here Ãp is a dense block, but it is size p × p, and p << q, so the system can be efficiently solved
using a sparse solver.

4.1.2 Mathematical Explanation

The basic idea behind the two-level solve is to use a Schur complement to eliminate the w variables
corresponding to the dense block by first symbolically solving for w in terms of v. For example,
consider the last set of equations

A2pxp + A2x2 −B2u2 = 0.

This can be solved for x2 in terms of xp as

x2 = A−1
2 (B2u2 −A2pxp) .

Now, the second block of equations, which are

Ap1x1 + Apxp + Ap2x2 −Bpup = 0,

can be rewritten using the new expression for w, resulting in

Ap1x1 + Apxp + Ap2

(
A−1

2 (B2u2 −A2pxp)
)
−Bpup = 0.

Finally, we can rewrite the full linear system now using only the variables x1 and xp[
A1 A1p

Ap1 Ap −Ap2A
−1
2 A2p

] [
x1

xp

]
−

[
B1u1

Bpup −Ap2A
−1
2 B2u2

]
= 0. (4.4)

4.1.3 Benefit

In both approaches, the end result is that we have eliminated the N × N dense block A2, and
replaced it with the p×p dense block Ap2A

−1
2 A2p, where p << q. Furthermore, we can use efficient

dense solvers to compute A−1
2 A2p since this step is completely separate from solving the rest of the

sparse system.

4.2 Discretized Circuit Equations

Now suppose each of the blocks in Figure 4.1 is a dynamical circuit modeled using MNA, so that
the full system has the form F1

Fp

F2

 =

 q̇1(x1, xp)
q̇p(x1, xp, x2)

q̇2(xp, x2)

 +

 f1(x1, xp)
fp(x1, xp, x2)

f2(xp, x2)

 = 0 (4.5)
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Again, we denote the internal ROM states as x2, the port nodes of the ROM as xp, and everything
external to the ROM as x1.

As before, we want to eliminate the variables x2 from the system. The second block of equations
can be expanded as

Fp = q̇p(x1, xp) + fp1(x1, xp) + fp2(x2)

Therefore, our goal is to replace the term fp2(x2) with a new term ∆fp(xp) that represents the
total current flowing out of the ROM into the port nodes xp. To do this, we simply solve the third
block of equations for x2 in terms of xp. However, first we must discretize the ODEs to obtain an
algebraic set of equations that can be solved. The standard discretization yields a system of the
form

F (xt, xt−1) = α(q − qt−1) + βf + (1− β)f t−1 = 0

Here α and β are determined by the time discretization method chosen. In general, we assume
α = 1/∆t, and β = 1 for Backward Euler, or β = 1/2 for Trapezoidal Rule. Since the ROM is
linear, we can write q = Cx and f = Gx, and the last block of equations becomes

F2 = βG2pxp + (αC2 + βG2)x2 + (1− β)G2px
t−1
p + ((1− β)G2 − αC2)xt−1

2 . (4.6)

Solving this last block for x2 yields

x2 = −(αC2 + βG2)−1
(
βG2pxp + (1− β)G2px

t−1
p + ((1− β)G2 − αC2)xt−1

2

)
. (4.7)

Since the ROM is linear, we have

fp2(x2) = Gp2x2,

and substituting in the expression for x2 yields

∆fp(xp) = −Gp2(αC2 + βG2)−1
(
βG2pxp + (1− β)G2px

t−1
p + ((1− β)G2 − αC2)xt−1

2

)
Thus, the new system of equations to be solved by the simulator is[

F1

Fp

]
=

[
q̇1(x1, xp)

q̇p(x1, xp, x2)

]
+

[
f1(x1, xp)

fp1(x1, xp) + ∆fp(xp)

]
= 0 (4.8)

In the terminology of a two-level solver, Solving system (4.8) is the “outer” solve, and the “inner”
solve occurs when we solve (4.6) for x2, as in (4.7)..

4.3 Two-level Device Stamps

Now that we have an explicit expression for simplified system we want to solve, we simply need
to determine how to obtain the new system (4.8) using ROM device stamps. That is, we cannot
modify directly the MNA equation for Fp to add the ∆fp term in (4.8). Instead, the ROM model
will have a stamp for q̄ and f̄ that affect only Fp(x), and we want to choose these quantities to
ensure the final system has the form of (4.8)

The “inner” solve takes place inside of the device function, while the “outer” solve is taken care
of at a higher level by the time integration routine.
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4.3.1 Residual Stamp

The residual stamp from the ROM affects only the port nodes xp, and is the previously derived
expression for Gp2x2

f̄ = ∆fp(x2) = −Gp2(αC2 + βG2)−1
(
βG2pxp + (1− β)G2px

t−1
p + ((1− β)G2 − αC2)xt−1

2

)
(4.9)

Since the charge terms in the ROM are accounted for in f̄ already, we can leave the charge stamp
empty

q̄ = 0

4.3.2 Jacobian Stamp

The stamp into the Jacboain is

∂F̄p

∂xp
=

∂F̄p

∂x2

∂x2

∂xp
= Gp2A

−1
2 βG2p (4.10)

This is the stamp to the full Jacobian αC + βG. However, the device stamps individually into C
and G, so we will have to define

C̄ = 0 (4.11)

Ḡ = Gp2A
−1
2 βG2p (4.12)

Note, there are many possible ways to distribute this stamp between C̄ and Ḡ. One reason to set
C̄ = 0 and not Ḡ is that C̄ will not be called when solving for the DC operating point.

4.4 Efficient Computation of the Device Stamp

Each call to the ROM device will produce the four stamps q̄, f̄ , C̄, Ḡ. The charge and capacitance
stamps q̄ and C̄ are zero, so we can ignore those.

The conductance stamp

Ḡ = Ḡ(α, β) = Gp2 (αC2 + βG2)
−1 βG2p (4.13)

depends only on α and β, which depend on the timestep and integration order, respectively.

The residual stamp

f̄ = f̄(α, β, x2, x
t−1
2 ) = Gp2x2 (4.14)

additionally depends on the internal state x2 and the port voltages xp.

The internal state also depends on port voltages and previous internal states.

x2 = (αC2 + βG2)
−1 (

βG2pxp + (1− β)G2px
t−1
p + ((1− β)G2 − αC2)xt−1

2

)
(4.15)
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It turns out that many of these terms, which are required at every call to the device function,
can be reused. This is true both within a newton loop and from one timestep to the next.

At a particular time step, the first thing to be computed is the internal state at the previous
timestep. However, unless we are at the very first timestep, this quantity should already be available
from the previous timestep. This procedure is explained in Algorithm 1.

Algorithm 1 Compute xt−1
2

INPUTS: xt−1
2 , xt−2

2 , xt−2
p , xt−1

p , αt−1, βt−1, At
2, At−1

2 , C2, G2, G2p, Gp2

if k = 0 then
if (t = 0) ‖ (failed LTE test) then

At−1
2 = αt−1C2 + βt−1G2

At−1
2 ← LU(A2)

else
At−1

2 ← At
2

end if
xt−1

2 ← At−1
2 \(βt−1G2px

t−1
p + (1− βt−1)G2px

t−2
p + ((1− βt−1)G2 − αt−1C2)xt−1

2

else
Load xt−1

2

end if
RETURN: xt−1

2

Next we need to construct and factor the A2 matrix, and compute the Jacobian stamp. However,
if we are not at the initial step of Newton (i.e. k > 0), then we can reuse the previously computed
Ḡ and factored A2 because they will not have changed. Additionally, if we are at the first step of
Newton, but neither the timestep nor the integration order have changed since the last step (i.e.
αt = αt−1 and βt = βt−1), then we can reuse Ḡ and A2 from the previous time step. This is shown
in Algorithm 2

Algorithm 2 Construct and Factor At
int, and construct Ḡ

INPUTS: αt, βt, αt−1, βt−1, At
2, Ḡ, C2, G2, G2p, Gp2

if (k > 0) ‖ ((t > 0)&&(αt = αt−1)&&(βt = βt−1)) then
Reuse previously factored A2

At
2 ← At

2

Ḡ← Ḡ
else

Update and refactor A2

At
2 ← αtC2 + βtG2

At
2 ← LU(At

2)
Ḡ← −Gp2A2t\(βG2p)

end if
RETURN: Ḡ, At

2

Lastly, computing the residual stamp requires computing the new internal state xt
2. Since this

depends on the port values xt
p, it will change at every Newton iteration and thus we must recompute

the residual stamp at every call to the device. This is shown in Algorithm 3.
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Algorithm 3 Compute xt
2 and f̄

INPUTS: xt−1
2 , xt−1

p , xt
p, αt, βt, At

2, C2, G2, G2p, Gp2

xt
2 ← At

2\(βtG2px
t
p + (1− βt)G2px

t−1
p + ((1− βt)G2 − αtC2)xt

2

f̄ ← Gp2x
t
2

RETURN: f̄

A few things of note:

• Matrix notation here (e.g. A2, Gp2) is consistent with notation used within the Xyce code

• In the above algorithms, A2 is used to represent both the original matrix A2 and its inverse
(A2)−1. This is because LAPACK does the factorization of A2 in place, so the contents of A2

depends on where you are in the algorithm.

• In the above algorithms, we use the Matlab notation backslash ‘\’ to represent solving a
system. Since A2 contains the LU factors of A2, writing A2∗B or (A2)−1B would be incorrect.
This also help remove some ambiguity as to whether a particular A2 is the original A2 or the
factored A2.
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Chapter 5

Examples

The transformation based approaches from Section 3 and the two-level solver approach from Sec-
tion 4 were tested on several examples.

5.1 RC Ladder

To illustrate the benefits of transforming the reduced model coordinate system, we first examine
an RC line circuit. In these examples we only consider scaling the reduced states in order to reduce
the number of time steps taken during transient simulation. At the present time, sparse reduced
models are not supported in Xyce, so sparsifying the system yields no performance speedup.

To begin, we construct a reduced model of order q = 20 using FDSVD that matches the
frequency-domain behavior of the original system very well. Next, we examine the transient re-
sponse of the large and reduced models in response to a pulse input. Figure 5.1 shows that the
reduced model, simulated in Xyce, actually simulates slower than the original system. This is due
to the increased number of time steps required, as described previously.

To remedy this time step issue, we apply the scaling procedure described in Section 3.1 to the
reduced model. The resulting reduced model is then simulated with the same setup, and as seen
in Figure 5.2, the number of time steps taken is drastically reduced, and as a result the reduced
model now simulates faster than the full system.

5.2 RLC Ladder

The next example considered is an RLC ladder. As in the previous example, we create a reduced
model using FDSVD method that matches the frequency behavior of the original system. We then
perform a transient simulation of the reduced model in response to a pulse input, the results of
which are shown in Figure 5.3. Due to the poorly scaled reduced model states, transient simulation
of the ROM takes ten times more steps, and simulates slower than the original system.

After applying the scaling procedure from Section 3.1 to the reduced model, the number of
timesteps required by the reduced model is drastically reduced, and the simulation performs faster
than the full system, as shown in Figure 5.4.
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order: 20
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Xyce ROM

Figure 5.1. Transient response to pulse input for original RC
circuit and reduced model. Note reduced model simulates slower
than original system, and requires many more transient steps.

5.3 Voltage Regulator Circuit

This circuit contains parasitic cables connected to 18 nodes of a voltage regulator, corresponding
to both measurement nodes and voltage supply nodes, resulting in a system with about 33, 000
unknowns. Using our previously developed techniques, we created ROMs for each of the cable
models, resulting in a system with only 3, 000 unknowns. Simulating the new model using the
scaling techniques described in 3.1, we were able to obtain a speedup of about 4x. Using the two-
level solver approach from Section 4 yields a further 4x speedup, for a total speedup of about 16x.
Figure 5.3 shows that the outputs of the circuit containing the ROM cable models (dotted lines)
matches very accurately the output of the full circuit (solid lines).
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Figure 5.2. Order 20 reduced model
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Figure 5.3. Transient response to pulse input for original RLC
circuit and reduced model. Note reduced model simulates slower
than original system, and requires many more transient steps.
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Figure 5.4. Reduced model with scaling.

Figure 5.5. Simulation of voltage regulator circuit containing
full cable models (solid lines) and the circuit prototype contain-
ing ROMs for the cables (dotted lines). The full circuit contained
approximately 33, 000 unknowns, while the circuit using reduced
models contained approximately 3, 000 unknowns, resulting in a
transient simulation speedup of about 16x.
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Appendix A

Math Details: Preservation of the
System under Transformation

In the scaling and sparisifcation methods presented above, we discussed both linear transformations
on the state variables of the reduced model, and linear transformations on the projection matrices.
In this section it will be shown that transforming the reduced system and the projection matrices
are equivalent, that neither such transformation affects the accuracy of the resulting model, and
that it is a trivial task to transform back to the original reduced state.

A.1 Transforming the Reduced Model

First we show that transforming the reduced system does not affect the input-output behavior of
the system. Consider the reduced model with state x̂

Ê ˙̂x = Âx̂ + B̂u, y = ĈT x̂.

The transformed system is created by changing coordinates to x̃, where x̂ = Px̃, and also left-
multiplying the system by another transformation matrix Q (referred to by me as “shuffling” the
equations), resulting in the following transformed system

QÊP ˙̃x = QÂP x̃ + QB̂u y = ĈT Px̃,

which we will write concisely as

Ẽ ˙̃x = Ãx̃ + B̃u y = C̃T x̃,

where Ẽ = QÊP , Ã = QÂP , B̃ = QB̂, and C̃ = P T Ĉ. It can be shown that these two systems
are identical in terms of input-output behavior by examining the transfer function. If the transfer
function of the original system is

H(s) = LT (sE −A)−1B,

then the transfer function of the transformed system is

H̃(s) = L̃T (sẼ − Ã)−1B̃ =

= LT P (sQEP −QAP )−1QB =

= LT P (Q(sE −A)P )−1 QB

= LT PP−1(sE −A)−1Q−1QB

= LT (sE −A)−1B

= H(s).
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Thus, any transformation to the reduced model (i.e. any choice of P,Q matrices) does not affect
the input-output behavior of the model. Note: we are assuming P and Q are invertible, which is a
reasonable assumption.

A.2 Transforming the Projection Matrices

Next, we will show that the system transformations discussed on the previous section, which was an
operation directly on the reduced model, can instead be viewed as a transformation to the projection
matrices, and thus applied to the projection matrices before the reduced model is created.

Consider the transformed reduced linear system

Ẽ ˙̃x = Ãx̃ + B̃u

and expand out the matrices Ẽ, Ã, B̃, resulting in

QÊP ˙̃x = QÂP x̃ + QB̂u.

Now expand Ê, Â, B̂, resulting in

Q(W T EV )P ˙̃x = Q(W T AV )Px̃ + Q(W T B)u.

Now regroup the terms

(WQ)T E(V P ) ˙̃x = (WQ)T A(V P )x̃ + (WQ)T Bu

and define new projection matrices W̃ = WQ and Ṽ = V P such that the transformed linear system
can be viewed as a projection of the original system with transformed projection matrices

W̃ T EṼ ˙̃x = W̃ T AṼ x̃ + W̃ T Bu.

As a result of the equivalence of these two approaches, we have the option of either integrating
the transformations into the MOR procedure, so they are performed on the projection matrices,
or applying them to the resulting ROM as a post-processing step. The latter is particularly useful
as we may not always have access to the MOR procedure itself. For example, we may be given a
reduced model created from some black box software.
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