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Abstract

While advances in manufacturing enable the fabrication of integrated circuits con-
taining tens-to-hundreds of millions of devices, the time-sensitive modeling and simu-
lation necessary to design these circuits poses a significant computational challenge.
This is especially true for mixed-signal integrated circuits where detailed performance
analyses are necessary for the individual analog/digital circuit components as well as
the full system. When the integrated circuit has millions of devices, performing a full
system simulation is practically infeasible using currently available Electrical Design
Automation (EDA) tools. The principal reason for this is the time required for the non-
linear solver to compute the solutions of large linearized systems during the simulation
of these circuits.

The research presented in this report aims to address the computational difficulties
introduced by these large linearized systems by using Model Order Reduction (MOR)
to (i) generate specialized preconditioners that accelerate the computation of the linear
system solution and (ii) reduce the overall dynamical system size. MOR techniques at-
tempt to produce macromodels that capture the desired input-output behavior of larger
dynamical systems and enable substantial speedups in simulation time. Several MOR
techniques that have been developed under the LDRD on ”Solution Methods for Very
Highly Integrated Circuits” will be presented in this report. Among those presented are
techniques for linear time-invariant dynamical systems that either extend current ap-
proaches or improve the time-domain performance of the reduced model using novel
error bounds and a new approach for linear time-varying dynamical systems that guar-
antees dimension reduction, which has not been proven before. Progress on precon-
ditioning power grid systems using multi-grid techniques will be presented as well as a
framework for delivering MOR techniques to the user community using Trilinos and the
Xyce circuit simulator, both prominent world-class software tools.
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1 Introduction
While advances in manufacturing enable the fabrication of integrated circuits containing
tens-to-hundreds of millions of devices, the time-sensitive modeling and simulation neces-
sary to design these circuits poses a significant computational challenge. This is especially
true for mixed-signal integrated circuits where detailed performance analyses are neces-
sary for the individual analog/digital circuit components as well as the full system. When
the integrated circuit has millions of devices, performing a full system simulation is prac-
tically infeasible using currently available Electrical Design Automation (EDA) tools. The
principal reason for this is the time required for the nonlinear solver to compute the solu-
tions of large linearized systems during the simulation of these circuits.

The research presented in this report aims to address the computational difficulties in-
troduced by these large linearized systems by using Model Order Reduction (MOR) to
(i) generate specialized preconditioners that accelerate the computation of the linear sys-
tem solution and (ii) reduce the overall dynamical system size. MOR techniques attempt
to produce macromodels that capture the desired input-output behavior of larger dynami-
cal systems and enable substantial speedups in simulation time. Several MOR techniques
that have been developed under the LDRD on ”Solution Methods for Very Highly Integrated
Circuits” will be presented in this report. Among those presented are techniques for linear
time-invariant (LTI) dynamical systems that either extend current approaches or improve
the time-domain performance of the reduced model using novel error bounds and a new
approach for linear time-varying dynamical systems that guarantees dimension reduction,
which has not been proven before. Progress on preconditioning power grid systems using
multi-grid techniques will be presented as well as a framework for delivering MOR tech-
niques to the user community using Trilinos and the Xyce circuit simulator, both prominent
world-class software tools.

1.1 Analog Circuit Simulation

In analog circuit simulation, the circuit is represented as a system of coupled DAE’s, which
are obtained from the enforcement of Kirchhoff’s current and voltage laws (KCL and KVL,
respectively) across an electrical network. The resulting system of differential algebraic
equations (DAE) has the following form:

f(x(t)) +
dq(x(t))

dt
= b(t). (1)

Simulation of this transient equation results in linear systems of the form:

(G+Q/δt)δx = (b− f)/δt (2)

involving the conductance matrix G(t) = df
dx(x(t)), and the capacitance matrix Q(t) =

dq
dx(x(t)). In general, there are several mathematical formulations that may be used to
produce this DAE system, but in practice, nearly all circuit simulators such as SPICE [15],
use the “modified KCL” formulation [23]. This is also the formulation used by Xyce [12].

7
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1.2 Model Order Reduction

The goals of any MOR technique are to (i) automatically and efficiently generate an inex-
pensive macromodel that captures the desired input-output behavior of the larger dynami-
cal system and (ii) enable substantial speedups in simulation time. While these techniques
have been successfully used in industry on linear dynamical systems, MOR techniques for
parametrized and weakly/strongly nonlinear systems are an active area of research. The
vast majority of current MOR methods are projection based, meaning that a macromodel of
the large-scale dynamical system is generated by projecting it onto some low-dimensional
subspace.

Projection based MOR methods generate their subspace using either a moment match-
ing based method (Krylov subspace methods) or SVD based method (balanced realiza-
tion, proper orthogonal decomposition). Moment matching methods use Krylov subspace
algorithms to generate subspaces that include a certain number of moments from the
transfer function of the original dynamical system. The resulting macromodels lack prov-
able error bounds and any guarantee of preserving stability or passivity of the original
model. Nonetheless, moment matching algorithms like Padé via Lanczos (PVL [5]), Pas-
sive Reduced-order Interconnect Macromodeling Algorithm (PRIMA [17]), and Structure-
Preserving Reduced-Order Interconnect Macromodeling (SPRIM [6]) are popular in the
electrical engineering community. Truncated Balanced Realization (TBR) methods gener-
ate macromodels that have provable error bounds and guaranteed preservation of stability
when the dynamical system is linear time-invariant. However, the numerical cost of gener-
ating the macromodel is high due to the solution of Lyapunov equations, which makes TBR
methods impractical for large-scale dynamical systems. Proper Orthogonal Decomposition
(POD) computes the projection subspace from time or frequency domain solutions, called
snapshots, of the original dynamical system. The macromodel generated using POD is not
guaranteed to preserve stability.

Nonlinear MOR techniques usually approximate the nonlinear system using linearization,
polynomial (Taylor) expansion, or functional (Volterra) expansion and then apply moment
matching or SVD-based methods on the approximation to compute a macromodel. A nat-
ural consequence of using linearization or expansion series on a nonlinear model is that
these approaches generate macromodels that are only valid within a region of the initial op-
erating point. Therefore, this approach can only be applied to weakly nonlinear dynamical
systems and the resulting macromodels are not suitable for large input disturbances.

Simulating very highly integrated circuits, where the number of devices is in the tens-to-
hundreds of millions, requires a novel application of MOR methods. Generating a macro-
model of the whole circuit may not be computationally efficient, especially if the full system
simulation of this circuit is part of a design phase where it is likely to change. Commercial
EDA tools use linear MOR techniques to expedite the modeling of circuit interconnects,
which can be done automatically from the circuit level descriptions before the full system
simulation is performed. Using linear/nonlinear MOR techniques on the individual devices
or logically associated groups of devices in a circuit is a novel extension of the current use
of MOR in circuit simulation. This approach would reduce the system of coupled DAEs
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to a system of macromodels and has the potential of being done automatically using the
circuit level descriptions. Furthermore, this approach allows different, device-specific MOR
techniques to be combined in the full circuit simulation as well as the reuse of macromod-
els for future design cycles. In the end, this approach reduces the overall dimension of the
dynamical system but the simulation of this system will still require the use of parallel solu-
tion methods, which in turn will necessitate efficient and scalable preconditioned iterative
linear solvers.

1.3 Preconditioning

The parallel performance of full system simulations is hindered by the lack of efficient and
scalable preconditioners for the iterative linear solver. Although specific features of large
scale circuit models are exploited by current preconditioners, the present state-of-the-art
eventually treats the resulting algebraic problem as a single large system. The algorith-
mic complexity of these preconditioners prohibits massive scalability because eventually
the cost of applying the preconditioner dominates the total solution time. Scalable pre-
conditioning techniques ultimately require some multi-level concepts, like those used by
multi-grid methods.

2 MOR for LTI Systems
Performing model order reduction on linear time-invariant systems essentially starts with
the state space realization of the original LTI system Σ ≡ (C,G,B,L) as in

Cdx
dt = −Gx(t) + Bu(t)

y(t) = LTx(t),
(3)

where C ∈ Rn×n, G ∈ Rn×n, B ∈ Rn×p and L ∈ Rn×p and x(t) is the state, u(t) the
input and y(t) the output of the system. Also, n is the size of the original system and p the
number of inputs (outputs). If p = 1, then (3) is referred to as a single-input-single-output
(SISO) system and, if p > 1, it is a multiple-input-multiple-output (MIMO) system.

For model order reduction, one constructs two projection matrices W ∈ Rn×k and V ∈
Rn×k such that WTV = Ik, where k is the desired size of the reduced system (k � n).
The reduced system is now Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂) governed by the following set of first-order
LTI differential equations

Ĉdx̂
dt = −Ĝx̂(t) + B̂u(t)

ŷ(t) = L̂T x̂(t),
(4)

where Ĉ = WTCV, Ĝ = WTGV, B̂ = WTB, L̂T = LTV. For more details, we refer the
readers to [1], [7] and the references therein.

The frequency input-output relationships of the original (3) and reduced (4) systems are
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determined by their corresponding transfer functions:

H(s) = LT (sC + G)−1B,
Ĥ(s) = L̂T (sĈ + Ĝ)−1B̂.

(5)

2.1 Moment Matching Scheme

Consider the Laurent expansions of the transfer functions (5) of the original and reduced
systems about a given point s0 ∈ C as follows:

H(s0 + σ) = η0 + η1σ + η2σ + . . . ,

Ĥ(s0 + σ) = η̂0 + η̂1σ + η̂2σ + . . . ,

where ηi and η̂i are the moments of Σ and Σ̂ at s0 respectively. The moment matching
based methods aim to compute a reduced system Σ̂, with a certain number of moments
matching those of the original system Σ, i.e.,

ηi = η̂i, i = 1, . . . , l,

for some l � n. Note that l does not necessarily equal k/p. In the survey performed
during the first year of the LDRD [16], two moment matching techniques were considered:
PRIMA and RKS. Since these techniques can be implemented iteratively, they are quite
numerically efficient. However, global error bounds are not available.

PRIMA

The Passive Reduced-Order Interconnect Macromodeling Algorithm (PRIMA) is proposed
by Odabasioglu et al. [17] in 1998. The algorithm utilizes the block Arnoldi procedure.
Note that for PRIMA, W = V. The resulting reduced system Σ̂ is proven to be passive
and hence, stable. The number of matched moments is equal to the desired size of the
reduced system Σ̂ divided by the number of inputs, i.e., l = k/p. While no global error
bound is available, Heres [10] provides some heuristic considerations for error control of
PRIMA in his Ph.D. thesis. Based on the numerical experiments presented in the survey
[16], the quality of the error estimation depends very highly on the interpolation points and
hence, it is local.

RKS

The Rational Krylov Subspace (RKS) method for model order reduction is proposed by
Skoogh [28] and is based on the rational Krylov algorithm by Ruhe [24]. The rational
Krylov algorithm is a generalization of the standard Arnoldi and Lanczos methods. The
advantage of the rational Krylov algorithm is that it provides the flexibility of choosing a set
of m different interpolation points (m ≤ k/p). The reduced system Σ̂ matches l = k/p
moments of the original system Σ at these interpolation points. Reduced models resulting
from RKS are not guaranteed to be passive and stable, and also no global error bound is
available.
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2.2 Balanced Truncation Reduction

The balanced truncation reduction is classified as an SVD-based scheme. The scheme
constructs the reduced model Σ̂ based on the Hankel singular values of the original system
Σ. For the LTI system Σ as in (3), the Hankel singular values can be computed by solving
the following two generalized Lyapunov equations for the system Grammians P and Q:

GPCT + CPGT = BBT

GTQC + CTQG = LLT .
(6)

Then the Hankel singular values of Σ are σi(Σ) =
√
λi(PQ), i = 1, . . . , n, the square roots

of the eigenvalues of the product of the system Grammians. The projection matrices can
be computed using the system Grammians and the reduced system Σ̂ results balanced.
In addition, the reduced system Σ̂ has the following guaranteed properties: (a) stability is
preserved, and (b) global error bounds exist in Hankel-norm approximation and they can
be computed as follows:

σk+1 ≤ ‖Σ− Σ̂‖∞ ≤ 2(σk+1 + . . .+ σn),

where k is the desired size of the reduced system Σ̂.

Despite the advantageous properties, MOR via balanced truncation is not very attractive
due to its computational requirements. The reason is in directly solving the two Lyapunov
equations (6); as n gets large, the complexity in computation and storage required is pro-
hibitive. A number of efforts have been made to solve the Lyapunov equations iteratively,
which were not examined in the survey [16], instead the following technique is considered:
GSHSR. This technique is a generalization of balanced truncation model order reduction
to descriptor systems.

GSHSR

The Generalized Schur-Hammarling Square Root (GSHSR) method is proposed by Mehrmann
and Stykel [14]. The essence of the algorithm is to decouple the descriptor system (3) into
its proper and improper portions and then reduce each of the portions separately. In ad-
dition to truncating the states that are difficult to control and/or to observe, GSHSR also
removes those that are uncontrollable and/or unobservable. The algorithm utilizes a col-
lection of solvers for (generalized) Lyapunov and (generalized) Sylvester matrix equations.
Specifically, as suggested in [14], to solve the generalized Sylvester equations, the gener-
alized Schur method by Kågström and Westin [11] is used. The upper triangular Cholesky
factors of the solutions of the generalized Lyapunov equations can be determined with-
out computing the solutions themselves by using the generalized Hammarling method by
Hammarling [9] and Penzl [18].

As mentioned above, GSHSR is a balanced truncation method. Therefore, there exist
global error bounds for the approximation Σ̂. Since the error bounds are in terms of the
Hankel singular values of Σ, the quality of the approximation depends on the decay of the
Hankel singular values. In other words, GSHSR is effective in model order reduction if the
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Hankel singular values of Σ decay rapidly. In fact, this is a common feature of all of the
balanced truncation techniques.

2.3 Optimal H2

The optimal H2 is classified as an SVD-based scheme in [1]. The reason is that it solves
the following model order reduction problem: Given a stable system Σ, an approximation
Σ̂ is sought to satisfy the following conditions:

σk+1(Σ) ≤ ‖Σ− Σ̂‖H2 ≤ ε < σk(Σ).

Therefore, the construction of the reduced system Σ̂ in this framework can mimic the
procedure as presented in Section 2.2. However, in 2008, Gugercin et al. [7] observe
the equivalence of the local optimality conditions for the model order reduction problem in
the two different frameworks: interpolation-based and Lyapunov-based. This result gives
birth to a new direction using the interpolation properties to construct an approximation Σ̂
without solving the two Lyapunov equations. In the survey [16], IRKA, a technique that
takes advantage of this result, is extended for descriptor systems.

IRKA

The Iterative Rational Krylov Algorithm (IRKA) is proposed by Gugercin et al. [7]. The
original algorithm as shown in [7] is proposed to work with non-descriptor systems. As
mentioned above, by using the interpolation properties, constructing an approximation Σ̂
can be done iteratively and without solving the two Lyapunov equations.

Despite these computational advantages, IRKA does not guarantee stability for the ap-
proximation Σ̂. The success of the iteration depends on the convergence of shifts, which
is unpredictable and depends on initial guesses. In addition, for MIMO descriptor systems
where ill-conditioned generalized eigenvalue problems have to be solved at each iteration,
shifts at infinity have to be taken care of. Essentially, one needs to remove the subspace
corresponding to the shifts at infinity from the computation. Our current approach is to
identify the unwanted subspace at each iteration and then replace it by some random sub-
space of the same dimension. This subspace replacement approach retains the size of
the successive reduced systems. However, the collection of shifts keeps getting polluted
by the replacements, which makes it very hard to achieve any convergence in shifts.

One resolution may be to remove the unwanted subspace without replacement. A draw-
back of this subspace removal approach is that the sizes of the successive reduced sys-
tems get smaller and smaller, reducing the system to an unacceptable size before any
convergence of shifts can be observed. Another potential approach to resolving the issue
of shifts at infinity may be to decouple the proper and improper portions of the descrip-
tor system (3) similar to the approach in GSHSR and then reduce each of the portions
separately.

12
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With the current implementation with the subspace replacement approach, the IRKA algo-
rithm for MIMO descriptor systems exhibits very unpredictable behavior with regards to the
convergence of shifts, stability and formation of reduced systems. For more information
on the extension of IRKA to descriptor systems and the results of this extension, see the
survey paper [16].

2.4 Mixed Moment Matching and Peak Error Objectives

If possible, it is clearly desirable to develop MOR techniques which can both incorporate
moment matching constraints into the reduction problem, and provide error bounds for gen-
eral classes of inputs. To date, however, results that provide for mixed formulations which
incorporate both error bounds and which simultaneously preserve general properties of
the frequency response are limited. Phillips et. al. in [19] provide an algorithm which, while
not able to preserve moment matching properties explicitly, does provide an SVD-based
method that is guaranteed to preserve passivity of the reduced order model. Gugercin et.
al. in [7] explain how the solution to a model reduction problem which minimizes the H2-
norm of the corresponding error system is guaranteed to match moments at mirror images
of the pole locations of the reduced order model (e.g., H(−sl) = Ĥ(−sl) where sl ∈ C is a
pole of the reduced order model Ĥ(s)). This result is limited, however, since the matching
frequencies cannot be chosen arbitrarily. Moreover, certain useful frequencies cannot be
matched (such as frequencies along the imaginary axis), since the reduced order models
are stable and, hence, Re{sl} < 0.

Some recent work by Astolfi in [2] considers a technique which can simultaneously match
moments and produce small error bounds via the introduction of a free parameter into the
state space description of the corresponding reduction problem. The result was the first of
its kind and, hence, takes an important first step into investigating the problem of mixed mo-
ment matching/error-bounding reduction methods. Nevertheless, when attempting to use
model reduction tools for the inherent purpose of simulation, the error bounds produced by
this tool— and the error bounds produced by all SVD-based reduction methods—are not
the most desirable because of the way they measure error. One of the primary motivations
of the work performed on this topic is that error is measured in a manner that is more useful
for designers than the standard measures of error. Consider an example to illustrate the
main issue along with a proposed resolution.

Measures of Error: Power vs. Peak Amplitude

Fig. 1 illustrates a hypothetical example where the red signal represents the output of an
original full order system and the blue signal represents the output of a reduced order
model that was created using an SVD-based technique. The moral of the example is this:
an SVD-based method will consider the red and blue responses to be “close” because
the power in the difference between the two signals is apparently small (note that the large
spike in the full-order signal is very narrow and, hence, contributes very little energy). While
such a measure of closeness may be appropriate for certain applications, if the signals
depicted in Fig. 1 represent a critical parameter whose value should never exceed 1, then
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Figure 1. Hypothetical responses of an original and reduced
order system produced via an SVD-based method.

it is clear that the reduced order model does not adequately represent the original model
since the response of the full-order system significantly exceeds 1 while the response of
the reduced order system stays well below 1.

From a simulation perspective, a somewhat more useful notion of error can be measured
in terms of peak amplitude. Formally, consider right-sided continuous-time signals y :
[0,∞)→ R, then the peak amplitude can be taken as the standard infinity norm:

||y||∞ = sup
t≥0
|y(t)|. (7)

In the context of model reduction, define y(t) as the response of an original system and
ŷ(t) as the response of a reduced order system for an identical input u(t), it is reasonable
to desire that ||y − ŷ||∞ be a small quantity. Indeed, if for a particular pair y(t) and ŷ(t)
define ε = ||y − ŷ||∞, then it immediately follows from the definition in Eqn. 7 that

|y(t)− ŷ(t)| ≤ ε ∀t ≥ 0. (8)

Fig. 2 depicts the meaning of Eqn. 8 graphically. In the figure, the black signal represents
the response of the original system y(t), and the surrounding area denoted “error region”
represents a desired region in which one would like the response of a corresponding re-
duced order model ŷ(t) to lie. In the context of Eqn. 8, the “height” of the error region at
every given time t is 2ε, indicating the desire for ŷ(t) to be close to y(t) uniformly over all
times.

14



Mixed Moment Matching and Peak Error ObjectivesSolution Methods for Very Highly Integrated Circuits

time

A
m

p
lit

u
d

e

 

 

Error region

Full!order
response

Figure 2. Depiction of full-order output signal surrounded by an
“error region”.

Problem Formulation: L1 Norm minimization

As part of the LDRD, for LTI systems, it was endeavored to develop bounds of the following
nature: denote by L∞(R+)

L∞(R+) =
{

u : [0,∞)→ R : sup
t≥0
|u(t)| <∞

}
(9)

then for every input u ∈ L∞(R+), find some (hopefully small) real number M > 0 such that

||y − ŷ||∞ ≤M ||u||∞. (10)

If such a bound exists for an original system model and a reduced system model for ev-
ery bounded input u, then the peak output of the error between the original and reduced
model is always less than some multiple of the peak input value. In particular, due to the
assumption of linearity, when M < 1, such a bound provides a guarantee that the point-
wise error between y(t) and ŷ(t) will never be more than a fixed percentage of the peak
input value. When the impulse operator of the original system is denoted by h(t) and the
impulse operator of the reduced order system is denoted by ĥ(t), it is a well-known fact
(see, for instance, [13]) that the smallest value of M as given in Eqn. 10 is the L1 norm of
the error system with impulse response h(t)− ĥ(t):

||h− ĥ||1 =
∫ ∞

0
|h(t)− ĥ(t)|dt. (11)

Hence, the problem of finding a reduced order model of a given LTI system for which the
peak error between the original output and reduced order output is small can be posed in
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the following manner: for a given order N , find some choice of ĥ(t) of order N for which
||h− ĥ||1 is small. Ideally, one would like to find that choice of ĥ(t) of order N such that the
quantity ||h − ĥ||1 is minimized, and that is the essential viewpoint that taken here. While
the problem of finding that choice of ĥ(t) which globally minimizes the L1 norm of the error
system is nonconvex and intractable to compute from a practical perspective, the research
presented focuses on methods that search for local minimizers over a sufficiently rich set
of choices for ĥ(t) so as to provide reduced order approximations that are both sufficiently
accurate and computationally tractable.

The problem of producing reduced order models via minimization of the L1 norm appears to
have been seldom considered in the literature. El-attar et. al. first considered this problem
in the context of some examples [4]. In the discrete-time setting, Sebakhy et. al. consider
a simple form of impulse response truncation to minimize the l1 norm of an error sequence
(||e||1 =

∑∞
k=1 |ek|) [27]. The closest work to the problem considered here appears to

be a result from the System Identification literature in which a reduced order model for
a discrete-time system which minimizes the l1 norm of an error metric is computed via a
linear programming approach [8]. While there are substantial differences with the class of
problems being considered here as compared to [8], the underlying technique of casting
such problems as linear programs is the same.

During the course of this LDRD, a new technique was developed for computing reduced
order models via an attempt to minimize the L1 norm of the corresponding error system
h(t) − ĥ(t). A major advantage of this technique is that mixed problems in which the L1

norm of an error system is minimized subject to a set of moment matching constraints can
be easily handled by this approach since the set of moment matching conditions can be
cast as a set of linear constraints on a set of decision variables. Also, as a byproduct of
this approach, the technique will be able to perform MOR for infinite dimensional systems,
a stark contrast to standard moment matching and SVD-based tools which operate only
on finite order state space descriptions. For more details on the L1 norm based approach
for reducing LTI systems and computational results, the reader is referred to [25, 26] and
the references therein.

2.5 Integrating Reduced Models

Integrating the reduced model (4) into a larger circuit requires an admittance matrix to be
generated from the original circuit (3). The admittance, or y-parameter, matrix provides
the relationship between the input voltage and output current at any port, input or output
node, of the original circuit. It is obtained by attaching a voltage source to every port of
the original circuit so that every port becomes both an input and output node. The state
space realization (C,G,B,L) of this modified circuit is then used, instead of the original,
to generate the reduced model. As a result of this requirement for integration, even if the
original circuit is SISO, the modified circuit used to generate the reduced model is always
MIMO. This constraint will be taken into account during the presentation of the model order
reduction schemes. For more details on reduced model integration, the reader is referred
to [17] and the references therein.
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3 MOR for LPTV Systems
Linear periodic time-varying (LPTV) systems arise in many electrical systems. Examples of
LPTV systems include switched capacitor circuits, mixers, etc. For such systems, macro-
models are normally constructed manually, which is heuristic and time consuming.

We present a novel algorithm which automatically abstracts the macromodels from the
SPICE-level circuit description. Unlike previous LPTV macromodel techniques which use
a time-invariant projection and produce a time-invariant reduced system, our method uses
a time-varying projection, resulting in reduced time-varying systems which have the same
form as the original system. This provides a key advantage during the simulation of the
reduced systems: our method results in an LPTV reduced system which directly produces
the ”real” solution of the system. In previous approaches, the simulation is first performed
on the reduced LTI system and some post-processing is required in order to obtain the
”real” solution of the system.

Since the background for LPTV systems is not as commonly known as that of LTI sys-
tems, we will present some background material. This will motivate the discussion of the
deficiencies in the previous techniques and the advantages of our new technique.

3.1 LPTV Systems Background

Consider a system driven by a large periodic signal bl(t) and a small signal u(t) to produce
an output w(t). For simplicity, we assume that both u(t) and w(t) are scalars. The system
can be described by the differential algebraic equations (DAEs)

dq(y)
dt + f(y) = bl(t) +Bu(t),

w(t) = dT y(t),
(12)

where y(t) is a vector of circuit unknowns (node voltages and branch currents), B and d
are incidence vectors that capture the connection of the input to the output for the circuit.

To more conveniently derive the transfer function of LPTV systems, first recall the MPDE
[3, 22] formulation of Eqn. 12, which separates the input and system time scales. This is
given by [

∂
∂t1

+ ∂
∂t2

]
q(ŷ(t1, t2)) + f(ŷ(t1, t2)) = bl(t2) +Bu(t1),

ŵ(t1, t2) = dT ŷ(t1, t2),
(13)

where ŷ(t1, t2) and ŵ(t1, t2) are the bivariate forms of y(t) and w(t) in Eqn. 12.

Assume that y∗(t2) is the periodic steady state solution of Eqn. 13 when u(t1) = 0. Lin-
earizing this MPDE around y∗(t2), we obtain

∂C(t2)x̂(t1,t2)
∂t1

+ ∂C(t2)x̂(t1,t2)
∂t2

+G(t2)x̂(t1, t2) = Bu(t1),
ẑ(t1, t2) = dT x̂(t1, t2).

(14)
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Here, C(t2) = (∂q(ŷ)/∂ŷ)|y∗ and G(t2) = (∂f(ŷ)/∂ŷ)|y∗ are periodic time-varying matrices.
x̂(t1, t2) and ẑ(t1, t2) are the small signal versions of ŷ(t1, t2) and ŵ(t1, t2), respectively.

Performing a Laplace transform with respect to t1, we further obtain

sC(t2)X̂(s, t2)+ ∂C(t2)X̂(s,t2)
∂t2

+G(t2)X̂(s, t2)
= BU(s),

Ẑ(s, t2) = dT X̂(s, t2),
(15)

where X̂(s, t2) and Ẑ(s, t2) are the transformed variables.

If we define the differential operator

D

dt2
[.] =

∂[C(t2).]
∂t2

, (16)

then the time-varying transfer function can be written in operator form

H(s, t2) = Ẑ(s,t2)
U(s)

= dT
[
sC(t2) + D

dt2
[.] +G(t2)

]−1
B.

(17)

An LPTV system can be converted to an artificial LTI system by discretizing the periodic
time variation using a finite basis [21, 20]. For example, we can expand the t2 dependence
in Eqn. 15 using a time domain Backward Euler finite difference basis. Define the following
long vectors

~XTD(s) = [X̂0(s)T , X̂1(s)T , · · · , X̂N−1(s)T ]T ,
~ZTD(s) = [Ẑ0(s)T , Ẑ1(s)T , · · · , ẐN−1(s)T ]T ,
~BTD(s) = [BT , BT , · · · , BT ]T .

(18)

and

D =


d

d
. . .

d

 . (19)

Here X̂i(s) = X̂(s, t2)|t2=ti and Ẑi(s) = Ẑ(s, t2)|t2=ti . t2 ∈ [0, T2]. N is the number of
sample points.

Then a time domain matrix form of Eqn. 15 is given by

[sCTD + JTD] ~XTD(s) = ~BTDU(s),
~ZTD(s) = DT ~XTD(s),

(20)
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where
JTD = GTD + ∆CTD

CTD =


C0

C1

. . .
CN−1

 ,

GTD =


G0

G1

. . .
GN−1

 ,

∆ =


1
δ1
I − 1

δ1
I

− 1
δ2
I 1

δ2
I

− 1
δN−1

I 1
δN−1I

 ,

(21)

Ci = C(t2)|t2=ti , Gi = G(t2)|t2=ti , and δi = t2,i− t2,i−1. A convenient matrix representation
for the time-varying transfer function 17 can be written if you define

~HTD(s) = [H0(s)T , H1(s)T , · · · , HN−1(s)T ]T , (22)

where Hi(s) = H(s, t2)|t2=ti . This is given by

~HTD(s) = DT [sCTD + JTD]−1 ~BTD. (23)

Then 20 is an LTI system and can be reduced by LTI MOR techniques, like block-Krylov
methods[17]. The transfer function 23 can be written in the form

~HTD(s) = LT [I + sA]−1R, (24)

where
L = D,R = J −1

TD
~BTD,A = J −1

TDCTD. (25)

Then Eqn. 25 can be used to generate reduced-order models using block-Krylov methods.
For example, applying the block Arnoldi algorithm with matrices A and R, we obtain a
orthogonal projection matrix Vq and a block Hessenberg matrix Tq. The transfer function of
the reduced-order model is given by

~Hq(s) = LTVq [Iq + sTq]
−1 V T

q R. (26)

It can be shown that ~Hq(s) approximates ~HTD(s).

The matrix-based MOR methods described above rely on a fixed, a-priori discretization of
the time-varying differential operators to convert an LPTV system into an LTI one. For the
operator-based MOR methods, that use the transfer function 17, the discretization basis
can be changed dynamically during the model-order reduction process. This is achieved
by modifying the internals of Krylov-subspace methods to use general function space op-
erators, instead of matrices. If a fixed discretization basis is used throughout the whole
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Arnoldi process, then discretizing the differential operator before the Arnoldi process (the
matrix-based MOR methods) and discretizing the operator during the Arnoldi process (the
operator-based MOR methods) produce the same results. For example, if the Backward
Euler finite difference basis is used in both methods to produce a q-th Krylov subspace,
the projection matrix from both approaches can be written as

Vq =


V0

V1
...

VN−1

 , (27)

where Vi = V (t2)|t2=ti and N is the number of time points during discretization. Note that
the long vector Vq has the same form as ~XTD(s), ~ZTD(s) and ~BTD(s) in Eqn. 18.

3.2 Previous LPTV MOR Approaches

The previous approaches impose several limitations on the model reduction process. First,
the time-varying structure of the system is not preserved. The original LPTV system is
first converted to an LTI system and then reduced to an LTI system. Simulations are
performed on the reduced system and additional post-processing is required to convert
the LTI solutions to LPTV solutions.

Moreover, during the process of converting an LPTV system to an LTI one, the size of the
system is enlarged by N , which is the number of discretization points. If we denote the
size of the original LPTV system by n, then the size of the LTI system after discretization
is n×N , or nN . For example, in Eqn. 20, ~XTD(s), ~ZTD(s) and ~BTD(s) are vectors of size
nN × 1. CTD and JTD are square matrices of size nN × nN and D is a rectangular matrix
of size nN × N . The LTI MOR techniques are performed on this enlarged system. As a
result, the reduced LTI system can potentially have a size of up to nN in order to accurately
approximate the original system. In other words, the reduced system can have a bigger
size than that of the original system. If we denote the size of the reduced system by q, then
q ≤ nN . However, it is not guaranteed q ≤ n. As demonstrated in section 3.4, the size
of reduced system generated using previous approaches is larger than the original system
size for some examples.

3.3 A Novel Structure Preserving MOR Technique for
LPTV Systems

In this section, we present a structure preserving MOR technique for LPTV systems. This
novel approach not only preserves the time-varying structure of the original system during
the model reduction process, but also guarantees the reduced system is smaller than the
original system.
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The Algorithm

Instead of converting an LPTV system to an LTI one, the system and projection matrix
have a time-varying structure. The block vector Vq in Eqn. 27 can be written in a time-
varying form as V (t2) in which V (t2) evaluated at t2 = ti corresponds to the i-th block
of Vq. Using this time-varying projection matrix, V (t2)T , to multiply the first row in the
time-varying system 15 and applying the change of variable X̂(t1, t2) = V (t2)X̂q(t1, t2), we
obtain

V (t2)T ∂C(t2)V (t2)x̂q(t1,t2)
∂t1

+ V (t2)T ∂C(t2)V (t2)x̂q(t1,t2)
∂t2

+ V (t2)TG(t2)V (t2)x̂q(t1, t2)
= V (t2)TBu(t1),

ẑq(t1, t2) = dTV (t2)x̂q(t1, t2).
(28)

Since V (t2) is not dependent on t1,

V (t2)T
∂C(t2)V (t2)x̂q(t1, t2)

∂t1
=
∂V (t2)TC(t2)V (t2)x̂q(t1, t2)

∂t1
. (29)

Applying the chain rule, gives

V (t2)T
∂C(t2)V (t2)x̂q(t1, t2)

∂t2
=
∂V (t2)TC(t2)V (t2)x̂q(t1, t2)

∂t2
− ∂V (t2)T

∂t2
C(t2)V (t2)x̂q(t1, t2).

(30)

Inserting Eqn. 29 and 30 into Eqn. 28 yields

∂V (t2)TC(t2)V (t2)x̂q(t1,t2)
∂t1

+ ∂V (t2)TC(t2)V (t2)x̂q(t1,t2)
∂t2

+V (t2)TG(t2)V (t2)x̂q(t1, t2)− ∂V (t2)T

∂t2
C(t2)V (t2)x̂q(t1, t2) = V (t2)TBu(t1),

ẑq(t1, t2) = dTV (t2)x̂q(t1, t2).

(31)

Using the definitions

Ĉ(t2) = V (t2)TC(t2)V (t2),
Ĝ(t2) = V (t2)TG(t2)V (t2)− ∂V (t2)T

∂t2
C(t2)V (t2),

B̂(t2) = V (t2)TB,
d̂(t2) = V (t2)Td,

(32)

the reduced system 31 can be rewritten as

∂Ĉ(t2)x̂q(t1,t2)
∂t1

+ ∂Ĉ(t2)x̂q(t1,t2)
∂t2

+ Ĝ(t2)x̂q(t1, t2) = B̂(t2)u(t1),
ẑq(t1, t2) = d̂(t2)T x̂q(t1, t2).

(33)

Note that the reduced system 33 has exactly the same form as the original MPDE system
14. Therefore, we can write the DAE form of the reduced system 33 as

dĈ(t)xq(t)
dt + Ĝ(t)xq(t) = B̂(t)u(t),

zq(t) = d̂(t)Txq(t).
(34)
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Here xq(t) is a vector of size q. The q-th order reduced system 34 is an LPTV system, which
is the same as the original system. Simulations are performed on this reduced system to
directly generate LPTV solutions. No additional post-processing is required. Following the
same procedure as in 3.1, we can write the time-varying transfer function of the reduced
system in operator form

Hq(s, t2) = d̂(t2)T

sĈ(t2) +
∂
[
Ĉ(t2).

]
∂t2

+ Ĝ(t2)

−1

B̂(t2). (35)

Properties of this Technique

One of the main advantages of this method is that the time-varying structure is preserved
throughout the whole reduction process, leading to an LPTV reduced system. By using a
time-varying projection V (t2), the separation of the LPTV system time scale t2 and signal
time scale t1 is preserved during the reduction process, which is not true for the previous
matrix based approaches. Preserving the time-varying structure also led to another desir-
able property: the size of the reduced system is never bigger than the original system, i.e.,
q ≤ n.

To understand the property of guaranteed dimension reduction, we first apply the Laplace
transform on t1 and write the matrix equivalent form of 28[

sV T
TDCTDVTD + V T

TDJTDVTD
]
~Xq(s) = V T

TD
~BTDU(s),

~Zq(s) = DTVTD ~Xq(s).
(36)

where CTD and JTD are square matrices of size nN × nN , defined in 21. ~BTD(s) is a
vector of size nN × 1 and D is a rectangular matrix of size nN ×N , defined in 18 and 19,
respectively. Vectors ~Xq(s) and ~Zq(s) are of size qN × 1, defined similarly to ~XTD(s) and
~ZTD(s) in 18. The projection matrix VTD is a matrix of size nN × qN defined as

VTD =


V0

V1

. . .
VN−1

 (37)

where Vi = V (t2)|t2=ti . Note the blocks Vi in VTD are the same as those in projection matrix
27 from previous methods. However, the blocks are arranged differently as a result of
using a time-varying projection. This special structure preserves the time-varying structure
during the reduction process.

When VTD becomes square matrix, i.e., q = n, the transfer function of reduced system is

~HqN (s) = DTVTD
[
sV T

TDCTDVTD + V T
TDJTDVTD

]−1
V T
TD

~BTD

= DTVTD
[
V T
TD(sCTD + JTD)VTD

]−1
V T
TD

~BTD
= DTVTDV −1

TD [sCTD + JTD]−1 (V T
TD)−1V T

TD
~BTD

= DT [sCTD + JTD]−1 ~BTD.

(38)
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Therefore, the transfer function of reduced system becomes the same as that of the original
system 23. In other words, we need a maximum of nN columns in VTD to accurately
approximate ~HTD(s) i.e., qN ≤ nN . Therefore, for our method

q ≤ n. (39)

3.4 LPTV Examples

In this section, we apply the structure preserving MOR technique to several LPTV systems
and demonstrate the advantage of this method over previous methods.

A Simple Upconverter

A simple upconverter from [21] is shown in Fig. 3. It consists of a low-pass filter, an ideal
mixer, and two bandpass filter stages. The purpose of showing this simple example is to
validate the structure preserving method since the transfer function of this example can be
analytically derived.

Figure 3. A simple upconverter.

Harmonic balance (HB) is used to discretize the LPTV system and consider the time-
varying transfer function at t2 = 0. Fig. 4 shows the comparison of the results from the
original system and the reduced system using the structure preserving method. As can be
seen in Fig. 4, both transfer functions match well across a broad frequency range.

A Double-Balanced Mixer

A double-balanced mixer from [29] is shown in Fig. 5. The mixer uses a local oscillator
frequency of 10kHZ.

The comparison of results from the original system, the reduced system using the structure
preserving method, and the reduced system using previous methods are in Fig. 6-7. We
consider the second harmonic of the time-varying transfer function H2(s). The original
system is an LPTV system of size 5. Using previous methods, which produce a reduced
LTI system, a reduced system size of at least 6 is needed to accurately approximate the
original system, as can be seen in Fig. 6. On the other hand, the reduced LPTV system
from the structure preserving method with a size of 2 produces results that match well the
results from the original system, as can be seen in Fig. 7.
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Figure 4. H0(s) comparison: the original system vs. the reduced
system using the structure preserving method.

Figure 5. A double-balanced mixer.
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Figure 6. H2(s) comparison: the original system vs. the reduced
system from a previous method.
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Figure 7. H2(s) comparison: the original system, the reduced
system from a previous method and the reduced system using the
structure preserving method.
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4 Conclusions
In this paper we presented research in novel techniques to address the computational
difficulties introduced by these large linearized systems by using Model Order Reduc-
tion (MOR) to (i) generate specialized preconditioners that accelerate the computation of
the linear system solution and (ii) reduce the overall dynamical system size. MOR tech-
niques attempt to produce macromodels that capture the desired input-output behavior
of larger dynamical systems and enable substantial speedups in simulation time. Sev-
eral MOR techniques that have been developed under the LDRD on ”Solution Methods
for Very Highly Integrated Circuits” were presented in this report. Among those presented
were techniques for linear time-invariant dynamical systems that either extend current ap-
proaches or improve the time-domain performance of the reduced model using novel error
bounds and a new approach for linear time-varying dynamical systems that guarantees di-
mension reduction, which has not been proven before. Progress on preconditioning power
grid systems using multi-grid techniques will be presented as well as a framework for deliv-
ering MOR techniques to the user community using Trilinos and the Xyce circuit simulator,
both prominent world-class software tools.
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[29] Z. Chen Z. Zhang and J. Lau. A 900mhz cmos balanced harmonic mixer for direct
conversion receivers. Proc. IEEE Radio and Wireless Conference (RAWCON), pages
219–222, 2000.

28



REFERENCES Solution Methods for Very Highly Integrated Circuits

DISTRIBUTION:

10 MS 0316
Eric R. Keiter, 01445

1 MS 0316
Robert J. Hoekstra, 01427

1 MS 0316
Richard Schiek, 01445

1 MS 0316
Heidi Thornquist, 01445

1 MS 0316
Ting Mei, 01445

1 MS 1110
Raymond S. Tuminaro, 01442

1 MS 0123
Donna L. Chavez, 01011

1 MS 0899
Technical Library (electronic
copy), 9536

1 MS 0612
Review & Approval Desk, for
DOE/OSTI, 9612

29


	Introduction
	Analog Circuit Simulation
	Model Order Reduction
	Preconditioning

	MOR for LTI Systems
	Moment Matching Scheme
	PRIMA
	RKS

	Balanced Truncation Reduction
	GSHSR

	Optimal H2
	IRKA

	Mixed Moment Matching and Peak Error Objectives
	Measures of Error: Power vs. Peak Amplitude
	Problem Formulation: L1 Norm minimization

	Integrating Reduced Models

	MOR for LPTV Systems
	LPTV Systems Background
	Previous LPTV MOR Approaches
	A Novel Structure Preserving MOR Technique for LPTV Systems
	The Algorithm
	Properties of this Technique

	LPTV Examples
	A Simple Upconverter
	A Double-Balanced Mixer


	Conclusions
	References

