SIERRA Thermal/Fluid/Aero Code Development Activities

Basil Hassan
Computational Thermal and Fluid Mechanics Dept.
Engineering Sciences Center

April 6, 2010
Outline

– Thermal/Fluid Capabilities
 • Current capabilities
 • Consolidation Effort

– Code Verification and Software Quality

– Support for NW Applications
 • Bombs (ie B61)
 • RB/RVs

– Future Work
Computational Thermal & Fluid Mechanics

– Capabilities
 • Thermal Response
 • Compressible Flow / Aerodynamics
 • Turbulent, Reacting Flow
 • Multi-phase, Non-newtonian Flow

– Nuclear Weapons Application Areas
 • Normal, Abnormal, and Hostile Environments
 – Bomb and RV/RB Aero
 – Bomb and RV/RB Component Thermal Response
 – Weapon Component Manufacturing Processes
 – Fire Safety

– Dual use -- Industrial Partners and Other Gov’t Agencies
 • Goodyear, Proctor & Gamble, DoD, NASA, AWE
Computational Thermal & Fluid Mechanics

- **Thermal** – Heat Transfer, Enclosure Radiation and Chemistry
 - Dynamic enclosures
 - Element birth death
 - Contact
- **Aero** – Compressible Fluid Mechanics
 - Subsonic through hypersonic
 - Laminar and turbulent
 - Unstructured mesh
- **Multiphase** – Non-Newtonian, Multi-physics, and Free Surface Flows
 - Complex material response
 - Level sets for surface tracking
 - Flexible coupling schemes
- **Fire/Combustion** – Low Speed, Variable Density, Chemically Reacting Flows
 - Eddy dissipation and mixture fraction reaction models
 - RANS and LES based turbulence models
 - Unstructured Mesh
 - Pressurization models
Thermal/Fluids Code Consolidation

• User Benefits:
 – Tightly-coupled thermal/fluid capability in one code (instead of previous four)
 • “One” syntax
 • Potential for added robustness and faster convergence due to tight coupling
 – Faster response to user needs
 • Agile programming teams, simplified distribution

• Development Benefits:
 – Capabilities need not be duplicated
 • Though under one Framework, implementation details of adaptivity, error estimation, load balancing, solution control, etc., are duplicated in each code
 – Agile programming teams.
 • Previously: 1 or 2 developers per code
 • Now: core team contributing to all application areas
 • Core team is growing as more developers gain experience
 – Simplified distribution
 • Reduced inter-code dependence make releasing and shipping code easier
 – Increased collaboration between different groups
Code Consolidation Status
Thermal Capability

• Governing Equations
 – 3D unsteady, energy equation
 – Volumetric heat sources
 • Chemistry - heat of reaction
 • Arbitrary Q(x,t)
 • Arbitrary Q(T)
 • Q(ϕ), ϕ = solution field

• Solution Algorithm
 – 2nd order GFEM scheme
 – Weighted residual form
 – Integration by parts
 – Stabilization for advection
 – 1st order: Forward Euler/Backward Euler
 – 2nd order: Adams-Bashforth/Crank-Nicolson
 – Automatic time stepping

• Spatial Discretization
 – Isoparametric elements
 – Super-parametric elements

• Thermal Capabilities
 – Enclosure radiation
 – Banded wavelength enclosure radiation
 – Generalized contact
 – ChemEQ chemistry model (w/ activation & deactivation controls)
 – Local coordinate systems for anisotropic materials
 – Standard and gradient shells
 – Block toggling/skinning capabilities
 – Thermoelectric coupling
 – Bulk fluid element capability is nearly complete
 – Element death capability is underway (CDFEM approach)

• Boundary Conditions
 – Temperature, Specified Flux, Convective Flux, Radiative
 – Flux, code specified or from transfers
• **Governing Equations**
 - 2D/3D compressible RANS
 - Ideal gas and non-equilibrium chemistry

• **Solution Algorithm**
 - Fully-implicit, fully-coupled, stabilized finite element formulation (SUPG)
 - Linear Lagrange basis: second order
 - First and second order time integration
 - Fixed or auto time step size selection
 - H-adaptivity

• **Viscosity Models**
 - Sutherland’s viscosity law
 - Keyes’ viscosity law

• **Turbulence**
 - Spalart-Allmaras turbulence model
 - k-ω turbulence model
 - Menter’s k-ω turbulence model

• **Boundary conditions:**
 - Supersonic inflow
 - Supersonic outflow
 - Subsonic inflow (reservoir)
 - Subsonic outflow (pressure)
 - Slip/symmetry
 - No slip isothermal wall
 - No slip adiabatic wall
 - Blowing wall, Coupled aerothermal heating
Code Consolidation Status
Fire Capabilities

• **Solution Algorithm**
 – 2nd order CVFEM Scheme
 – Backward Euler and Steady solver; variety of predictors

• **Pressure Stabilization**
 – Second order and fourth order pressure stabilization
 – Time step and characteristic scaling

• **Coupling Strategy**
 – Fully-coupled scheme
 – Fully-segregated scheme

• **Property Evaluations**
 – Cantera along with standard Aria properties

• **Convection Operators**
 – Upwind, Geometric upwind and Central with automatic blending

• **Energy/Species**
 – Temperature form (heat conduction) and static Enthalpy
 – Arbitrary subindex-ed mass fraction (EDC combustion) and mixture fraction transport
 – Non-unity laminar transport with energy due to mass transport and correctional terms for appropriate behavior for j_{jk}

• **Turbulence**
 – LES Ksgs, TFNS, $k-\omega$ and $k-\varepsilon$
 – Iso-tropic eddy viscosity closure
 – Gradient diffusion closure for scalars (h, Y_k, Z_k)

• **Boundary Conditions**
 – Inflow, Open (dynP), Symmetry, Wall Function
New Capability Additions

- Investigation of unified FEM algorithms for extension to high speed compressible flows and fire applications
- Improved Thermal Contact and Enclosure Radiation
- Shallow Water Equations (flowing liquids)
- Aluminum propellant fire support (reacting, evaporating particles with participating media radiation and Eulerian gas phase coupling)
- Strained laminar flamelet model with heat loss due to radiation in combustion applications
- Finite rate chemistry and ablation for re-entry