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Abstract

At the cellular level, biological regulation networks can be modeled as electrical circuits
where signals are produced, propogated and sensed. Using Xyce it is possible to
simulate large control networks consisting of entire cells or cell cultures in order to
understand the dynamics and stability of such systems. This document describes
methods and results on adapting Xyce to biological problems.
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1. Introduction

Expression of a genetic code defines characteristics of a given organism. As an organ-
ism grows and adapts to its local environment specific elements of its genetic code are
expressed while other elements are suppressed. Complex control mechanisms exist to
regulate the expression of genes during the life of a cell. [2, 3]

To fully appreciate how a genetic repository or genome translates into a functioning cell,
one must understand the control mechanisms of genetic expression. Genetic products
of a given gene can promote or suppress the further production of that gene creating
a simple feedback loop. [2, 3] Similarly, genetic products from other genes can regulate
the production of a given gene creating complex feedback loops or expression cascades.
Feedback loops and cascades are not limited to a single cell, but can span an entire cell
culture or cellular generation influencing differentiation and development. [4]

As an abstraction to better understand genetic expression and control, genetic material
and its associated control mechanisms can be viewed as a genetic switch. [5, 2, 6] For
example, figure 1.1 demonstrates a simple genetic switch involving two genes. Gene A is
controlled by a promoter that is normally no allowing the expression of Gene A into RNA
and a protein. The protein product from Gene A interacts with a normally off promoter for
Gene B activating that promoter. On activation, Gene B is expressed and its protein product
formed. To complete a cycle, the protein product from Gene B must bind with some envi-
ronmental factor and if such binding occurs then this product will deactivate the promoter
for Gene A. This simple switch will results in oscillatory concentration levels of the gene
products over time. Also, this switch can be modeled as an electrical circuit where a signal
(the transcript from a section of DNA) is generated and altered as it interacts with other
components during its propagation. This analogy is far from perfect as there are significant
differences in the switching speed and signal to noise ratio of a genetic circuit versus an
electric circuit. However, this analogy allows one to consider very complicated, dynamic
control circuits while investigating expression stability and population dynamics. [4]

Genetic expression and control pathways can be successfully modeled as electrical cir-
cuits. Given the vast quantity of genomic data, very large and complex genetic circuits can
be constructed. To tackle such problems, the massively-parallel, electronic circuit simula-
tor, Xyce [7], has being adapted to address biological problems. Unique to this bio-circuit
simulator is the ability to simulate not just one or a set of genetic circuits in a cell, but many
cells and their internal circuits interacting through a common environment. Additionally, the
circuit simulator Xyce can couple to the optimization and uncertainty analysis framework
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Figure 1.2. An electrical circuit analog of a simple genetic switch.
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Dakota [8] allowing one to find viable parameter spaces for normal cell functionality and
required parameter ranges for unknown or difficult to measure biological constants.

Circuit analogs for common biological and chemical machinery have been created. Using
such analogs, one can construct expression, regulation and reaction networks. Individual
species can be connected to other networks or cells via non-diffusive or diffusive channels
(i.e. regions where species diffusion limits mass transport). Within any cell, a hierarchy
of networks may exist operating at different time-scales to represent different aspects of
cellular processes.

This simulator can model interesting biological and chemical systems such as the metabolic
and genetic networks for an E. coli and Drosophila sp. cellular differentiation network. This
document explores the construction of biological circuits, simulating partial and full cellular
networks, connecting of many cells for cell culture simulations and visualizing the results.

14



2. Casting Biological
Networks as Circuits

A biological or chemical simulation working within an electrical circuit context requires a
translation framework to convert from the former domain to the latter. In electronics, a
fundamental and conserved quantity is charge while in the biological domain, one is often
concerned with concentration of a given chemical compound. Given a control volume,
such as the volume of a cell, concentrations can be converted to mass. As a basis for a
biological to electrical problem conversion, this work will equate mass of a given chemical
species with charge. Each pathway or wire in a circuit will carry a different chemical species
and the charge on that wire will denote the mass of that chemical species present in the
simulation control volume.

Continuing this analogy, electrical current which is the timed rate of change of charge is
equivalent to the rate of mass change, i.e. how quickly a compound is used or created
by the system or mass flux through the system. Voltage is a relative measure of electrical
potential. The chemical or biological analog to voltage here is chemical concentration pro-
vided one is measuring voltage relative to a neutral ground. Kirchhoff’s Voltage Law, KVL,
which requires the voltage drop around any closed circuit to be zero [9] enforces a stoi-
chiometric balance on chemical reactions. Kirchhoff’s Current Law, KCL, which requires
the current flow into a circuit node balance current flow out of that node enforces conserva-
tion of mass within the system. For reference, table 2.1 summarizes the analogous terms
joining chemical, biological problems and electronic circuit problems. It is important to note
that with such a framework in place, we are not ignoring any important kinetic or stoichio-
metric aspects of the biological problem just to work within an electrical circuit domain.
Rather, we are using this framework to take advantage of existing simulation capabilities

Chemical, Biological Electrical
Domain Domain
mass charge

mass flux current
concentration* voltage

stoichiometric conservation Kirchhoff’s voltage law
mass conservation Kirchhoff’s current law

Table 2.1. Equivalents between the chemical, biological domain
and the electrical circuit modeling domain.

15



XyceTM Biological Modeling Casting Biological Networks as Circuits

developed for electrical modeling problems. Note, that there is no equivalent to volume in
the electrical domain. Thus for one to strictly employ concentration one must first define a
consistent system volume such as a biological cell or culture plate.

2.1 Reactions and Conservation of
Mass

In a typical chemical or biochemical problem, one constructs a mass balance on the
species of interest to understand dynamic behavior. Conservation of mass implies:

Rate of mass change = Production− Consumption + Flux though boundary (2.1)

Specifically, for a given species, A, and a control volume V , equation 2.1 becomes:

dA

dt
=

∑
fi(A)−

∑
gi(A) +

∮
S(V )

h(A) (2.2)

where the functions fi(A) represent the sources of A, gi(A) represents potential sinks of
A, and the surface integral represents flux of A through the surface enclosing the control
volume, S(V ).

To fully demonstrate how the conservation of mass inspired equation 2.2 translates into
the electrical domain, consider the following reversible reaction system for compounds A,
B and C:

aA + bB 
 cC (2.3)

where a, b and c are stoichiometric coefficients. If kf is the forward reaction rate constant
and kr is the reverse reaction rate constant and one assumes the reaction obeys power
law kinetics, then rate of consumption of A by reaction 2.3 is:

Consumption = akf [A]a[B]b (2.4)

and the rate of production of A from the reverse reaction of 2.3 is:

Production = akr[C]c (2.5)
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Finally, if species A obeys fickian diffusion, any diffusive flux into or out of the control
volume is:

Flux = kdS(V ) ([A]− [A]∞) (2.6)

Since diffusive flux is driven by a concentration gradient in A, a concentration of A outside
of the local control volume V is required to fully specify a diffusive flux. This external
concentration of is is denoted: A∞, while the diffusion coefficient is kd and the flux area is
S(V ).

Note, that reaction rates are often calculated using species concentration. However, if one
specifies a consistent control volume, i.e. a cell’s volume or a finite element cell volume,
then mass can be used in place of concentration. Since the concentration of A equals the
mass of A divided by the control volume, [A] = A/V , one can use mass, A, rather than
concentration, [A], with a few extra multiplicative constants, V Ct,

Summing equations 2.4, 2.5 and 2.6 yields a conservation of mass equation for A.

d[A]
dt

= akr[C]c − akf [A]a[B]b + kS(V ) ([A]− [A]∞) (2.7)

Rearranging terms in equation 2.7 and replacing concentration terms, [·], with voltage pro-
posed in table 2.1 so that [A] becomes VA or voltage at node A everywhere except within
the time derivative term.

d[A]
dt

− akrV
c
C + akfV a

AV b
B − kS(V ) (VA − VA∞) = 0 (2.8)

Finally, within the time derivative we will convert the concentration of A to mass of A via.
[A] = A/V . Also, following the proposed substitution of charge for mass from table 2.1,
such that A → qA equation 2.8 becomes:

1
V

dqA

dt
− akrV

c
C + akfV a

AV b
B − kS(V ) (VA − VA∞) = 0 (2.9)

Equation 2.9 arose by applying a conservation of mass constraint on species A. Once
translated to an electrical domain using the framework outlined in table 2.1, it now repre-
sents an application of Kirchhoff’s current law to the circuit node, A. Examining the terms in
equation 2.9 indicates the devices influencing node A. The first term represents a capac-
itor and has the physical meaning that the chemical A must be able to accumulate within
the control volume. If one makes the logical choice of non-dimensionalizing the volume
with the choice of control volume, then the capacitor capacitance will equal one implying
that no work is required to accumulate species A. Terms two and three of equation 2.9

17
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are voltage dependent current sources or behavioral sources. Current into our out of node
A is dependent on the voltage at other nodes, just as the rate of production or consump-
tion of species A depended on the concentration of other species. Finally, the last term
represents a linear resistor adding or subtracting current depending on the voltage relative
to a reference state such as ground. The exact form of the constant which would equal
the resistors conductance depends on the problem geometry and is explored in the next
section.

Physically this resistor serves several important purposes. First, in an electrical circuit, all
voltages are relative quantities typically specified relative to a ground potential. Concen-
tration on the other hand is not a relative quantity. Inserting a resistor between the node of
interest and the ground ensures that the concentrations inferred from voltages are all rel-
ative to a ground or zero value. Second, this resistor provides a DC path to ground which
is a requirement to consistently find a DC solution for this circuit. Finally, on a physical
level, this resistor can represent common degradation process within a cell where a given
chemical is continuously destroyed.

2.2 Enzymatic Reactions
While the previous example dealt only with power law kinetics, enzymatically controlled
reactions mechanisms such as Michalis-Menton kinetics are easily handled. For example,
given the simple, enzyme catalyzed reaction:

A → B (2.10)

applying the same conservation of mass approach as used above yields the following
equation for circuit node A.

1
V

dqA

dt
− Vmax

VA

Km + VA
− kS(V ) (VA − VA∞) = 0 (2.11)

Note, that the overall structure of equation 2.11 is the same as equation 2.9 except that
the behavioral source has changed to reflect the enzyme controlled kinetics.

2.3 Diffusion
The previous section dealt only with a reaction occurring at one point in space or a single
node of a circuit. In a real system, reactions occur over a continuous span of distance
and the reactants may not have uniform concentrations over that distance. Thus, one may
need to consider how material is convected within the system in particular by diffusion.

18
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The diffusion equation may be written as:

∂A

∂t
−D

∂2A

∂x2
= 0 (2.12)

where A is the species of interest, t is time, x is a spatial coordinate and D is the diffusivity
which must have units of length squared over time.

Since there is not a characteristic length scale in the circuit simulation the partial derivative
in the spatial direction has no simple analog. Choosing a characteristic length scale from
the chemical or biological domain denoted L, such as cell spacing, one can approximate
this partial derivative with finite differences yielding

d[A]i
dt

−D
[A]i+1 + [A]i−1

(2L)2
= 0 (2.13)

where the subscript i denotes a grid location.

Now, if one converts the concentration of A in the time derivative to a mass of A and to
voltage as in previous section, the result is:

1
V

dqAi

dt
− D

(2L)2
(VAi+1 + VAi−1) = 0 (2.14)

One finds that using the diffusion equation to relate nodes in a circuit as if they were spa-
tially connected by diffusion is equivalent to adding capacitors for species accumulation
(fist term in equation 2.14) and linear resistors between the nodes (second term in equa-
tion 2.14). Importantly, one can relate the diffusivity and characteristic length scale to the
conductance of the resistors: D/(2L)2. Thus, to second order in the spatial dimension,
one can fully capture the effects of diffusion. This simple analysis extends equally to two
and three dimensions.

2.4 Circuit Primitives
With the above examples in mind, it is possible to generalize components of a reaction
based network as devices in an circuit. These generalized devices can than be attached
like regular circuit devices to create complex systems.

First, all species being tracked by a simulation must be able to accumulate and must have
a simple path to ground. These qualification give rise to the chemical channel or chemical
wire – a circuit connection where charge can accumulate, unlike a typical wire where no
accumulation can take place. A simple subcircuit definition of a chemical channel is:

*
* Chemical channel subcircuit
*

19
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* This is simple a capacitor to allow for the accumulation
* of material and a path to ground
*
.SUBCKT ChemCh chNode PARAMS: chCon=1e-16

Ccch1 chNode 0 1 IC=chCon
Rrch1 chNode 2 1e12

.ENDS

One could use such a subcircuit in a normal netlist with the line:

xWater WaterNode ChemCh PARAMS: chCon=55.5

Which for the chemical, Water, which exits on the node, WaterNode, would start the simu-
lation with a concentration of 55.5 (the molar concentration of pure water).

20



3. Reaction Networks

In this chapter we consider networks of chemical reactions as a first step to modeling bio-
logical systems. Reaction networks occur in biological systems in the form of metabolic or
biosynthesis pathways. Organic, chemical reactions are presented here as they are sim-
pler and better understood than their biological counterparts. Additionally, when chemical
networks are coupled together, self-organizing behaviors can be found.

3.1 Oscillatory Reaction Systems
The Belousov-Zhabotinskii (BZ) reaction system is a complex, chemical reaction network
that produces oscillatory concentration waves of the metallic species Ce4+ and Ce3+. [10]
While interesting in its own, this reaction system is also a good analog of a biological
reaction cycle.

HOBr + Br− + H+ 
 Br2 + H2O (3.1)
HBrO2 + Br− + H+ 
 2HOBr (3.2)
BrO3 + Br− + 2H+ 
 HBrO2 + HOBr (3.3)

2HBrO2 
 BrO−3 + HOBr + H+ (3.4)
BrO−3 + HBrO2 + H+ 
 2BrO2 ·+ H2O (3.5)

BrO2 ·+ Ce3+ + H+ 
 HBrO2 + Ce4+ (3.6)
BrO2 ·+ Ce4+ + H2O 
 BrO−3 + Ce3+ + 2H+ (3.7)
Br2 + CH2(COOH)2 → BrCH(COOH)2 + Br− + H+ (3.8)

6Ce4+ + CH2(COOH)2 + 2H2O → 6Ce3+ + HCOOH + 2CO2 + 6H+ (3.9)
4Ce4+ + BrCH(COOH)2 + 2H2O → 4Ce3+ + HCOOH + (3.10)

Br− + 2CO2 + 5H+

Br2 + HCOOH → 2Br− + CO2 + 2H+ (3.11)

To simplify the modeling presented here, the key elements of the Belousov-Zhabotinskii
reaction network can be summarized by the following system:

21



XyceTM Biological Modeling Reaction Networks

A       B

B       C

B + 2C       3C

C       D

A

B

C

D Di
ffu

sio
n 

Li
m

ite
d 

Co
nn

ec
tio

n
To

 O
th

er
 C

el
ls

Cell

Figure 3.1. A simplified BZ reaction system confined to a cell.
Each cell contains a cyclical reaction pathway which produces
oscillating concentrations of species, B and C. Reaction rates
are concentration dependent and influenced by neighboring cells
through a diffusive connection to a common environment.

A → B (3.12)
B → C (3.13)

B + 2C → 3C (3.14)
C → D (3.15)

where the key to oscillatory behavior is the auto-catalytic production C in the third reaction
where B combines with 2C to produce 3C. This is the equivalent to the behavior of the
radical species BrO2· when one considers the sum of reactions 3.5 and 3.6 or 3.5 and 3.7
from the full Belousov-Zhabotinskii system.

3.2 Coupling Oscillatory Systems

Figure 3.1 depicts a simplified BZ reaction system known as the Oregonator [10] contained
within a model cell, hereafter called a BZ reaction cell. For simplicity, the various chemical
species have been renamed A, B, C and D. In the reaction scheme, species A is con-
verted to B. Species B can be converted directly into C or, auto-catalytically using existing
material C. Dual routes to the production of species C and different reaction rates lead to
oscillations in the local concentrations of B and C as one reaction pathway is favored over
the other. The last step in this reaction pathway is the conversion of C to species D.
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Figure 3.2. Ten BZ cells in a line producing concentration waves
of species B. As species A diffuses out from the origin, the cells
initiate diffusion-limited, concentration waves of species B.
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Capacitors within the cell allow for accumulation mass for a given compound allowing con-
centrations to vary continuously. Each species is also free to diffuse into or out of the cell
via a diffusive circuit element and such flux is proportional to the local concentration gra-
dient. Finally, each chemical species can also participate in various chemical reactions as
shown by the circuit lines connecting the various reaction devices.

Ten BZ reaction cells, arranged in a line and connected by a diffusion limited environment
were simulated and the results are shown in figure 3.2. At time-zero, a drop of species A
was placed at the origin. As time progresses, species A diffuses along the y-axis and
also starts the reaction cycle in each cell. Since the reaction cycle produces time periodic
concentrations of species B and C, one expects spatial variations in the concentration of
species B. The contours shown in figure 3.2 depict the concentration of B, and they show
diffusion-limited, concentration waves propagating along the line of cells. The concentra-
tion waves are due both to the diffusion of species A as well as diffusion of species B as
it is consumed more quickly in neighboring cells that have locally higher concentrations of
species A.

Returning to the full set of reactions listed at the start of this chapter, one can model signal
transduction along a line of cells. Figure 3.3 presents a set of cells containing the entire
Belousov-Zhabotinskii reaction system described earlier. As this system is considerably
larger, the goal will be to show non-steady oscillation which here represents a signal being
sent along the line of cells rather than a steady oscillation pattern. In figure 3.3, the cells
are aligned along the y-axis and an initial pulse of Ce3 at the origin. As time advances, a
signal propagates along the cells in the form of a concentration wave of BrO2· (or any of
the oscillatory species). At longer times one starts to see the formation of a steady state
behavior of pulses moving up the vertical axis.
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Figure 3.3. Fifty BZ cells, simulating the entire BZ reaction sys-
tem, in a line demonstrating signal transduction along the cellular
axis.
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4. Multicellular
Differentiation

When biological networks interact across cell boundaries, communication is effectively oc-
curring between these cells. In this chapter we examine how inter-cellular communication
between networks controlling cellular development can lead to cells differentiating into var-
ious cell types. A well studied biological system is the fruit fly, Drosophila sp. to which we
turn next.

4.1 Drosophila Differentiation
Development of a biological system from one state to another in a controlled manner usu-
ally involves feedback to assert such control. The multi-cellular network controlling tissue
differentiation in the common fruit fly, Drosophila sp., is no exception. [11, 12, 13] During
Drosophila’s development a series of bands develop along the major axis of the growing
embryo (see micrograph in figure 4.1). Such bands are a graphical indicator of the under-
lying cellular differentiation in progress. The schematic shown in figure 4.2, represents the
control network responsible for cellular differentiation in Drosophila. [11] Though complex,
this network typically bifurcates into one of three states. If a cell is producing the gene
product wg then the protein WG will likely be produced as well. The WG protein is exported
into the cellular environment and picked up by neighboring cells where it can promote the
expression of the gene product en. The en gene product represses the production of wg
and puts the cell into a different state from a cell producing WG, specifically into a state
where it is producing and expressing HH. Thus, cells will typically be producing either WG or
HH with a small percentage of cells producing low levels of both of these proteins.

4.2 Model Implementation
To understand and model cellular differentiation, we have simulated the Drosophila sp.
segment polarity gene network for a 2D array of cells connected through a common diffu-
sion limited environment. In such an environment, cells experience local concentrations of
differentiation stimuli determined by neighboring cells production and consumption rates.
These local stimuli effect the genetic and metabolic regulatory networks within the cell
directing the cells eventual development. For this model problem, we have examined func-
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Figure 4.1. A Drosophila sp. embryo showing developmental
differentiation. [1]

tionality and the system?s sensitivity to initial noise by using Dakota [8], Sandia’s optimiza-
tion program, to explore the system?s parameter space.

Actual simulations of the Drosophila network were carried out as follows. The network was
converted to an electrical circuit using analogs for chemical reactions, material storage,
promotion, repression, degradation and diffusion. These analogs treat electrical charge, a
conserved quantity in electrical circuit simulators as mass. Once the intra-cellular circuit
was created, a 10 by 10 grid of cells embedded within a diffusion limited environment was
created, again as a circuit. Fundamental constants like reaction rates, enzymatic turnover
rates and diffusion coefficients were parameterized within this circuit. Such parameteriza-
tion allows the optimization program Dakota to alter parameters between simulation runs
to explore the phase space for this system.

4.3 Simulation Approach

With expression, enzymatic turn-over, reaction and diffusion rates and noise levels all pa-
rameterized, a design of experiments approach with latin-hypercube sampling was used
to understand how this collection of state variables controls the resulting system. To ad-
dress the 22 primary model parameters, over 50,000 simulation runs were coordinated by
Dakota and conducted by Xyce using a multi-level parallel computation approach. A sta-
tistical analysis of the simulation output allows one to gauge dominate control parameters
and system stability relative to initial condition noise.
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Figure 4.2. A Developmental control circuit in Drosophila sp.
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Figure 4.3. Celluar levels of differentiation promoters.

4.4 Results
Shown below in figure4.3 are concentration contour plots of the species WG and HH. Ini-
tially, the system was started with zero concentration of the exported species, PH, PTC
and HH and an oscillatory level of WG. This initial oscillatory state represents the initial bias
that anterior-posterior, dorso-ventral patterning hierarchies initiate in the developing em-
bryo [12]. Additionally, a 10% rms. random noise was added to the WG initial conditions to
simulate disturbances of the system from an ideal starting state. Such noise was also pa-
rameterized in the circuit and varied to gauge system robustness. Physically, the striations
in concentration shown in figure 4.3 represent layers of cells becoming WG producing or HH
producing over time similar to the micrograph of a Drosophila embryo shown in figure 4.1.

To study the effect of initial noise on the system’s ability to differentiate, simulations were
started with varying amounts of random noise in the WG concentration field. This noise was
gaussian in distribution and ranged from 0 to 30% of the maximal value of WG. Figures 4.4
and 4.5 shows the probability of successful cellular differentiation as a function of initial
system noise. While this system is very stable in the absence of noise [11, 13], this work
demonstrates that even a small quantity of initial noise significantly reduces the system’s
functionality.
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5. Simulating Tryptophan
and Lactose Regulatory
Networks
Biological networks are composed of a large number of interacting pathways. Developing
a robust, efficient and accurate simulation of such large scale systems is a daunting and
computationally intensive task. Similar to biological networks, electrical systems are com-
posed of large numbers of subsystems and interacting subcircuits. Simulation of these
systems must produce accurate results in an efficient manner. Parallel circuit simulation
tools, such as Xyce (http://www.cs.sandia.gov/xyce/ ) allow engineers to model and test
large scale systems. The theoretical framework used in developing Xyce also provides the
necessary tools for constructing a biological circuit simulator which can model multivariate,
multiscale, hybrid biological networks.

In order to take advantage of the Xyce simulation framework, we create circuit abstractions
of biological elements and construct netlist files that are executed using Xyce. Similar to
the abstractions used in flux balance analysis (FBA), the flow of metabolic and genetic
substrates are synonymous to the flow of current through an electrical circuit [14, 15]. In-
teractions in genetic regulatory circuits were initially represented using CMOS-based logic
sub-circuits. Boolean logic simulations of gene networks is consistent with the boolean net-
work models for genetic regulation used by other researchers [16, 15]. Metabolic reactions
are simulated using analog sub-circuits where metabolite accumulation and degradation
are modeled using capacitors and resistors, respectively. A genetic clock (modeled as
a discrete-value voltage source) is used to synchronize genetic events. The enzymatic
products of genetic pathways function as “metabolic clocks” by controlling when metabolic
reactions occur.

5.1 Application to Escherichia coli
Regulatory Pathways

Using Xyce, we simulate the metabolic and genetic regulation of the tryptophan and lactose
biosynthesis. These two pathways were selected as example systems for constructing
and testing the circuit simulation framework because the genetic and metabolic networks
directly interact. In both systems the final output of the metabolic circuit is an input into the
gene regulatory network, which coordinates the expression of enzymes that catalyze the
metabolic reactions.
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Figure 5.1. Genetic and metabolic control for the activation of
tryptophan biosynthesis.

In bacteria, the synthesis of tryptophan is regulated primarily by feedback inhibition where
the presence of tryptophan negates the production of four enzymes that catalyze various
steps in tryptophan biosynthesis: anthranilate synthase, anthranilate phophoriosyl trans-
ferase, indole glycerol phosphate synthase, and tryptophan synthase [17]. The presence of
tryptophan represses the transcription of the tryptophan operon. The operon contains five
structural genes: trpE, trpD, trpC, trpB, and trpA. The repressor gene, trpR, the promoter
region, the operator region and the trpL leader gene are also part of the the tryptophan
operon (see Figure 5.1).

In the absence of tryptophan (or very low levels of tryptophan in the bacterial cell), the RNA
polymerase molecule is able to transcribe the region of the DNA that codes for the trpED-
CBA genes. The ribosome translates the resulting messenger RNA (mRNA) and produces
the enzymes that catalyze the metabolic reactions for tryptophan biosynthesis (Figure 5.1).
Once a significant level of tryptophan is present in the cell the tryptophan feeds back into
the genetic regulation processes and repression occurs in two steps. Tryptophan, acting
as a corepressor, binds to the inactive repressor protein (an aporepressor), which is the re-
sult of transcribing and translating gene trpR. The activated repressor/tryptophan complex,
a holorepressor, binds to the tryptophan operon. This prevents the RNA polymerase from
transcribing the trpEDCBA gene, hence the enzymes needed for catalysis of the metabolic
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Figure 5.2. Genetic and metabolic control for the repression of
tryptophan biosynthesis.

reactions in the biosynthesis pathway are not formed and tryptophan biosynthesis stops
(Figure 5.2).

The genetic regulation, derived from Xiu et al.’s work [17], is modeled using Boolean cir-
cuits with tryptophan concentration as the only variable input and the presence (logic 1) or
absence (logic 0) of trpEDCBA as the output. The current implementation leaves room for
the incorporation of a more detailed genetic circuit model that takes into account factors
such as mRNA concentration, genetic rate constants, and gene levels. The existing model
makes the simplifying assumption that the presence of the trpEDCBA gene correlates to
the successful production of the corresponding enzymes.

The stoichiometric reactions involved in tryptophan biosynthesis are (data from http://www.ecocyc.org
and http://gcrg.ucsd.edu/organisms/ecoli.html):

chor + gln → glu + pyr + an
an + prpp → ppi + npran

npran → cpad5p
cpad5p → co2 + igp

igp + ser → t3p1 + trp

(5.1)
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Table 5.1. Abbreviations for metabolites involved in tryptophan
biosyntesis.

Abbreviation Metabolite
chor Chorismate
gln Glutamine
glu Glutamate
pyr Pyruvate
an Antranilate

prpp Phosphoribosyl pyrophosphate
ppi Pyrophosphate

npran N-(5’-phosphoribosyl)-anthranilate
cpad5p 1-(O-Carboxyphenylamino)-1’-deoxyribulose-5’phosphate

co2 Carbon dioxide
igp Indole glycerol phosphate
ser Serine

t3p1 Glyceraldehyde 3-phosphate
trp Tryptophan

Table 5.1 lists the abbreviations for the metabolites involved and modeled in our Xyce simu-
lation of tryptophan biosynthesis. To connect the gene network and the metabolic reaction
network, we developed CMOS-based transmission gates and incorporated the gates into
the stoichiometric reaction subcircuit. This permits the output of the gene network to reg-
ulate when and if a metabolic reaction occurs. Figure 5.3 depicts the tryptophan circuit.
Stoichiometric data (from http://gcrg.ucsd.edu/ and http://biocyc.org/ ) and qualitative de-
scriptions available in literature [18, 17] are used to construct the coupled metabolic and
genetic circuit netlist:

***************************************************************************
Tryptophan Biosynthesis Circuit

**************** Genetic Circuit
* Initial conditions for logic circuit
** Set voltage and clock values
Vdddev nVdd 0 5V
VddNdev nVddN 0 -5V
Vset set 0 0V
Vreset reset 0 0V

Vclk genClk 0 PULSE(-5V 5V 0 0.1 0.1 .8 1.6)
xNeg_gclk genClk genClkNot neg

* Initial Conditions: assume apoRep and mRNA available at constant concentration
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Figure 5.3. Circuit diagram of tryptophan genetic and metabolic
control

* [apoRep] = 10 M 10V=positive 1 in CMOS logic gates
* [mRNA] = 10 M
Vin_apoRep apoRep 0 5V
Vin_mRNA mRNA 0 5V

xAnd_holoRep trp apoRep holoRep nVdd and2
xNot_opr holoRep opr nVdd not
xAnd_trpEDCBAprev opr mRNA trpEDCBAprev nVdd and2
xDff_trpEDCBA trpEDCBAprev enzymeIn enzymeInNot nVdd nVddN
genClk genClkNot set reset dff

xEClk_trpEDCBA enzymeIn trpEDCBA trpEDCBANot enzymeClk
PARAMS: oldmaxVal=5 newmaxVal=5

RresHoloRep holoRep 0 100K
RresOpr opr 0 100K
RresTrp trp 0 100K
RresTrpEDCBAprev trpEDCBAprev 0 100K

*********************** Metabolic Circuit
* Initial Conditions for metabolic network
* [chor] = 0.01 M
* [gln] = 0.01 M
* [prpp] = 0.01 M
* [ser] = 0.01 M
*
* Externally provided
CcapChor chor 0 1 IC=5

37



XyceTM Biological Modeling Simulating Tryptophan and Lactose Regulatory Networks

CcapGln gln 0 1 IC=5
CcapPrpp prpp 0 1 IC=5
CcapSer ser 0 1 IC=5

* Internally produced but not consumed
CcapGlu glu 0 1 IC=.01
CcapPyr pyr 0 1 IC=.01
CcapPpi ppi 0 1 IC=.01
CcapCo2 co2 0 1 IC=.01
CcapT3p1 t3p1 0 1 IC=.01

* Internally produced and consumed in tryp operon genetic network
CcapTrp trp 0 1 IC=.01

* Internally produced and consumed in tryp metabolic network
CcapAn an 0 1 IC=.01
CcapNpran npran 0 1 IC=.01
CcapCpad5p cpad5p 0 1 IC=.01
CcapIgp igp 0 1 IC=.01

** chor + gln -> glu + pyr + an
xRxn_ChorGln_GluPyrAn chor gln glu pyr an trpEDCBANot trpEDCBA nVdd nVddN Rxn2To3
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 p3Stio=1 fRate=1
** an + prpp -> ppi + npran
xRxn_AnPrpp_PpiNpran an prpp ppi npran trpEDCBANot trpEDCBA nVdd nVddN Rxn2To2
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 fRate=1
** npran -> cpad5p
xRxn_Npran_Cpad5p npran cpad5p trpEDCBANot trpEDCBA nVdd nVddN Rxn1To1
PARAMS: r1Stio=1 p1Stio=1 fRate=1
** cpad5p -> co2 + igp
xRxn_Cpad5p_Co2Igp cpad5p co2 igp trpEDCBANot trpEDCBA nVdd nVddN Rxn1To2
PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 fRate=1
** igp + ser -> t3p1 + trp
xRxn_IgpSer_T3p1Trp igp ser t3p1 trp trpEDCBANot trpEDCBA nVdd nVddN Rxn2To2
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 fRate=1

** Analysis
.TRAN 0.25s 20s 0
** Output
.PRINT TRAN V(genClk) V(holoRep) V(trpEDCBAprev) V(enzymeIn) V(trpEDCBA)
V(chor) V(an) V(glu) V(npran) V(cpad5p) V(igp) V(trp)
***************************************************************************

Figure 5.4 shows the results of the tryptophan circuit simulation. In Figure 5.4 the hori-
zontal axis is simulation time (tSim) and the vertical axis is concentration of the enzyme

38



5.1 Application to Escherichia coli Regulatory Pathways XyceTM Biological Modeling

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

tr
yp

E
D

C
B

A

Simulation Results for Tryptophan Circuit

0 2 4 6 8 10 12 14 16 18 20
0

5

C
H

O
R

0 2 4 6 8 10 12 14 16 18 20
0

5

G
LU

0 2 4 6 8 10 12 14 16 18 20
0

1

2

C
P

A
D

5P

0 2 4 6 8 10 12 14 16 18 20
0

2

4

T
R

P

Time

Figure 5.4. Circuit diagram of tryptophan genetic and metabolic
control.

and metabolites involved. The simulation results illustrate features of the well known tryp-
tophan regulation process. At simulation time tSim=0, tryptophan is not present in the
system so the genetic circuit permits the transcription (and ultimately translation) of the
trpEDCBA enzyme (first graph of Figure 5.4) which catalyzes reactions in the tryptophan
biosynthesis pathway. As depicted in Figure 5.4, tryptophan (TRP; fifth graph) is produced
as chorismate (CHOR; second graph) and 1-(o-carboxyphenylamino)-1’-deoxyribulose-5’-
P (CPAD5P;
fourth graph) are consumed. While CPAD5P is produced and consumed during tryptophan
biosynthesis, Glutamate (GLU; third graph) is produced but not consumed by any step in
the biosynthesis pathway. Once a significant level of tryptophan is present in the system
(e.g. simulation time tSim= 4) transcription of the trpEDCBA enzyme is inhibited. As tryp-
tophan is degraded (tSim=4 to tSim= 7.5) transcription of the trpEDCBA gene resumes
once tryptophan levels fall below threshold (currently the boolean logic sub-circuit is acti-
vated when levels fall below approximately 0.5*(Maximum Substrate Concentration)). After
tSim=7.5, although tryptophan levels increase slightly, there are not enough reactants in
the system to produce sufficient tryptophan levels in the presence of the degradation ele-
ment.

Boolean Kinetics Model of Gene Regulation

Interactions in genetic regulatory circuits were initially represented using CMOS-based
Boolean circuit. We found that as the network size increased (discovered for larger, eighty-
one node gene network simulation), successful simulation became prohibitive. Therefore
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Figure 5.5. Simulation results of tryptophan genetic and
metabolic circuit using a Boolean kinetics framework for gene net-
work modeling.

we devised non-CMOS based logic gates using Boolean kinetics [19, 20]. In Boolean
kinetics, gates are of the form:

dY

dt
= F (X, TY )− aY

where a and TY are variable parameters and for our simulations F (X) is a unit step func-
tion. Boolean kinetics allowed us to produce analog waveforms for the gene network and
lends towards a more realistic depiction of genetic networks. The use of the Boolean ki-
netics framework for genetic circuits produced similar results as depicted in Figure 5.5.
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5.2 Lactose Operon
The genes that code for the enzymes responsible for the metabolism of lactose, along with
the operator and promoter regions (the operator and promoter are specific regions of the
DNA that are next to the the protein coding genes) upstream of the genes form the lactose
operon. The three structural genes, lacZ, lacY , and lacA code for β-galactosidase, a per-
mease, and galactose transacetylase, respectively. The current Xyce simulation of lactose
metabolism only represents the enzymatic activity of the lacZ gene, the β-galactosidase
gene.

The stochiometric equation for lactose catabolization is

lac → glac + glc (5.2)

where lac is Lactose, glac is Galactose, and glc is a-D-Glucose. The production of the
lacZY A gene is regulated by the elements on both sides of the stochiometric relation. A
repressor gene (designated as LacRep in the lactose circuit diagram, Figure 5.6) codes for
a repressor protein that binds to the lactose operator region. The binding of the repressor
protein interferes with and inhibits the transcription of lacZY A and the production of the
enzymes needed for lactose metabolism. When an inducer protein such as lactose is
present in the cell, the repressor protein is unable to bind to the operator and transcription
proceeds successfully. The amount of glucose in the cell also affects the expression of
the lactose genes, this effect is called catabolite repression. If glucose and an inducer
are both present, the operon will not be fully expressed. When the levels of glucose are
reduced, the levels of cAMP increase. cAMP binds to a protein called CAP (also called
CRP) forming a complex that binds to the promoter region, increasing the efficiency of
transcription initiation. In the Boolean model of the genetic regulatory circuit, the effect of
the inducer plus the effect of glucose is modeled as an AND event. Figure 5.6 shows
a schematic of the simulated lactose metabolic and gene regulatory network. As in the
tryptophan circuit, we use stoichiometric data (http://gcrg.ucsd.edu/ and http://biocyc.org/)
and qualitative descriptions [18] to construct the coupled metabolic and genetic circuit
netlist for the lactose operon:

***************************************************************************
Lactose Degradation Circuit
********************************* Genetic Circuit
* Initial conditions for logic circuit
** Set voltage and clock values
Vdddev nVdd 0 5V
VddNdev nVddN 0 -5V

Vset set 0 0V
Vreset reset 0 0V

Vclk genClk 0 PULSE(0V 5V 0 0.1 0.1 .8 1.6)
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Figure 5.6. Circuit diagram of lactose genetic and metabolic con-
trol

*xNeg_gclk genClk genClkNot neg
xNot_clk genClk genClkNot nVdd not

* Initial Conditions: assume lacRep, CRP available at constant concentration
* [lacRep] = 5 M 5V=positive 1 in CMOS logic gates
* [CRP] = 5 M 5V=positive 1 in CMOS logic gates
* glc=glucose glac=galactose lac=lactose iptg=isopropylthiogalactosidase
Vin_lacRep lacRep 0 5V
Vin_crp crp 0 5V
Vin_iptg iptg 0 5V

*Rep-Inducer subcirc - Operator circ
xNot_lacRepNot lacRep lacRepNot nVdd not
xAND_lacRepIptg lacRep iptg lacRepIptg nVdd and2
xOr_lacOpr lacRepNot lacRepIptg lacOpr nVdd or2

* Transcrip/Translat Circ
xNot_cAMP glc cAMP nVdd not
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xAND_cAMPcrp cAMP crp cAMPcrp nVdd and2
xAnd_mRNA cAMPcrp lacOpr mRNA nVdd and2
xEClk_lacZYA mRNA lacZYA lacZYANot enzymeClk PARAMS: oldmaxVal=5 newmaxVal=5

RresLacRepNot lacRepNot 0 100K
RresLacRepIptg lacRepIptg 0 100K
RresLacOpr lacOpr 0 100K
Rres_cAMP cAMP 0 100K

*RresGlc glc 0 100K
** Lower resistance to simulate degradation
RresGlc glc 0 10
Rres_mRNA mRNA 0 100K

********************************* Metabolic Circuit
* Initial Conditions for metabolic network
* [lac] = 0.01 M
* Externally provided
CcapLac lac 0 1 IC=5

* Internally produced but not consumed
CcapGlac glac 0 1 IC=.01

* Internally produced and consumed in tryp operon genetic network
CcapGlc glc 0 1 IC=.01

** lac -> glc + glac
xRxn_lac_GlcGlac lac glc glac lacZYANot lacZYA nVdd nVddN Rxn1To2
PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 fRate=1

** Analysis
.TRAN 1s 20s 0
** Output
.PRINT TRAN V(genClk) V(lac) V(glc) V(glac) V(mRNA) V(lacZYA) V(cAMPcrp)

***************************************************************************

Lactose simulation results, Figure 5.7 correspond to qualitative descriptions of the operon
model. The results represent a circuit without the delay element or genetic clock. At
simulation time tSim=0, lactose (LAC) is transported into the system. The absence of
glucose (GLC) in the system causes the genetic circuit to permit the production of the
β-galactosidase (lacZYA) enzyme which breaks down lactose into glucose and galactose
(GLAC). Glucose is produced and degraded in this circuit. Once glucose levels reach a
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Figure 5.7. Circuit diagram of lactose genetic and metabolic con-
trol

threshold point, the genetic circuit turns off the production of lacZYA (graph 2 in Figure 4).
Note, galactose is produced but not degraded. Between tSim=1 and tSim=2 the level of
glucose oscillates due to the switching on and off of the lacZYA enzyme. This behavior can
also be observed for tSim=4 to 6 and tSim= 7.7 to 9.4. After tSim= 9.5, although glucose
levels are below threshold and lacZYA is present, lactose levels are too low to produce
sufficient amounts of glucose to overcome the degradation element (graph 1 of Figure 4).

The model elements and framework developed and refined for the tryptophan and lactose
systems are used to implement large-scale Xyce simulations of whole-organisms.
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6. Simulation of an
Eighty-One Node Inferred
Gene Network

6.1 Boolean Logic Framework for
Simulation

Quantitative descriptions of biochemical pathways that govern the functional behavior of
cells are constructed using computational frameworks such as mathematical logic and
Boolean algebra, differential equations, and graph theory [Liang et al. 1998; Smolen et al.,
2000; Dutilh 1999; Thiefry and Thomas, 1998; McAdams and Shapiro, 1995; McAdams
and Arkin, 1998; Covert, et al. 2001, Schilling, et al. 2000, Wiechert 2002; Wagner and
Fell, 2001]. The question the model attempts to answer determines the mathematical
framework used. For instance, models used in the analysis of metabolic pathways typically
employ differential equations in order to recover parameters useful in predicting growth
and by-product secretion rates [Covert, et al. 2001, Schilling, et al. 2000]. But when the
model is used to determine the qualitative behavior of a pathway, such as gene regulatory
pathways [Thieffry and Thomas, 1998], a logical representation of the system may be a
necessary and sufficient simplification. To construct a whole-cell gene network simulation
we use mathematical logic and Boolean algebra as the framework for constructing our
model.

Mathematical Logic and Boolean Algebra

The field of Computer Engineering uses mathematical logic in the design of digital systems
for computer hardware. A digital system is a system with (1) Discrete (usually 0 and 1 in
a binary digital system) inputs and outputs; (2) Explicit functions that translate the input
stream into new output streams [Katz 1994]. Digital system design is the second level in
the design of complex hardware systems. Complex hardware systems can be described
using three levels of abstraction (each level representing increased details): system, logic,
and circuit levels. System level describes the input and output behavior in an abstract
manner using flowcharts or computer programs; logic level uses logic gates as building
blocks to implement the behavior of underlying components of the system; circuit level
uses electrical components, such as resistors and capacitors, to implement the building
blocks used in the logic level [Katz 1994]. Figure 6.1 parallels these hardware system
abstraction levels to biological system description levels.
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Figure 6.1. Biological parallels to hardware system abstraction
layers.
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There are several ways to represent a system using mathematical logic (permits us to
categorically evaluate the truth of a set of statements) and Boolean algebra (algebraic
method for combining logic values). Possible system representation includes: [Katz 1994].

• Truth table: a list of all possible input combinations and the resulting output values
for the given system.

• Logic gates (schematic representation): implementation of the system using inter-
connected primitive components (logic gates, ex: OR, AND, NOT)

• Boolean equations: an algebraic short-hand for representing the truth table of a func-
tion or system.

Combinational logic units, are digital systems that can be defined as a network of inter-
connected gates and switches without feedback, Figure 6.2(B). Their output depends only
on the current inputs. Sequential logic circuits incorporate feedback; their output depends
on the current input and the history of previous inputs or the previous state of the system
[Katz 1994]. Returning again to Kaufman, et al.s 1985 B-cell/T-cell model, the updating
function for the helper T-cell, H, is defined as: H = e * s + h, (where s indicates negation of
s). Figure 6.3 shows the logic gate schematic.

6.2 Modeling Gene Networks with
Boolean Logic

The use of mathematical logic to quantify biological processes began in the late nineteen
sixties with Kaufmans work which uses Boolean networks to analyze biochemical pathways
and model interactions of immune molecules [Dhaeseleer, 2000; Pereleson and Weisbuch,
1997]. Boolean networks model each node or gene in the case of gene networks as on
(a value of 1) or off (a value of 0). The updating function for each node is dependent on
the current state of all its k input nodes [Dutilh, 1999; Dhaseleer, 2000]. Although Boolean
networks are a gross approximation of the intricate interactions present in biochemical
networks or immune response networks, they have yielded useful results in the analysis
or experimental gene expression data and for reverse engineering of biological networks
[Dhaeseleer, 2000].

Circuit Constructs for Large-Scale Gene Network Modeling

In order to accomplish our goal of hybrid modeling by coupling genetic and metabolic
network simulations, a focus of this project was to develop primitives for modeling gene
networks. Gene networks are modeled as Boolean networks using logic gates (AND, OR,
NOT). We initially developed CMOS based logic gates and delay elements for gene level
simulation of the tryptophan and lactose operon networks. The CMOS based models were
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Figure 6.2. Truth table (A), logic gate schematic (B), and Boolean
equation (C) representation of B-cell population (from Kaufman,
Urbain, and Thomas (1985) B-cell/T-cell discrete interaction model
[Perlesnon and Weisbuch, 1997]).
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Figure 6.3. Logic gate schematic representation of helper T-cell
population (from Kaufman, Urbain, and Thomas (1985) B-cell/T-
cell discrete interaction model [Perleson and Weisbuch 1997].
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Table 6.1. Boolean kinetics equations for implementation of ge-
netic logic gates.

Logic Relation Boolean Kinetics Equation
NOT (X) dY

dt = F (VMax −X, TY )− aY

X1 AND X2
dY
dt = F (X1, TY,1) ∗ F (X2, TY,2)− aY

X1 OR X2
dY
dt = F ((F (X1, TY,1) + F (X2, TY,2)), TY,OR)− aY

used to successfully simulate small hybrid systems in E. coli. As the gene network size
increased, causing the number of CMOS gates to also increase, the Xyce simulation was
not feasible.

To accommodate whole organism gene networks, we developed logic gates using Boolean
kinetics. AND, OR, and NOT gates are simulated using a variation of the dynamic boolean
equations used in Shen-Orr, et al. 2002 paper which in turn is based on the Boolean
kinetics equation presented in McAdams and Arkin, 1998. The general equation for a
gene Y whose output concentration is dependent on the concentration of an input gene X:

dY

dt
= F (X, TY )− aY (6.1)

where in our implementation F (X, TY ) is a step function dependent on the activation
threshold value, TY . The constatnt a is related to the degradation rate of Y . Variations
of the general form, Equation 6.1, are used to represent the logic gates as depicted in
Table 6.1: Below is the netlist implementation of the basic single input and double input
Boolean kinetics logic gates represented in Table 6.1:

************** Boolean Kinetics Logic Gates*********************

********************************************************************

***** NOT Subcircuit
.SUBCKT NOT in1 outF PARAMS: koutF=1
***SUBCIRCUIT OR - Dynamic Boolean OR gate
*** Equation: outF = NOT in1=> d outF/dt = F(Vmax - in1,TNot)- kout*outF
*** Note: Vmax=Max voltage, TNot=0.5
.PARAM vMax=1
.PARAM TNot=0.5
BoutF outF 0 V={SDT(U(vMax-V(in1) - TNot) - V(outF)*koutF)}
.ENDS

********************************************************************
***** AND Subcircuit
.SUBCKT AND in1 in2 outF PARAMS: T1=0.5 T2=0.5 koutF=1
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*** SUBCIRCUIT AND - Dynamic Boolean AND gate
*** Equation: outF = in1 AND in2 => d outF/dt = F(in1,T1)*F(in2,T2)
- kout*outF
BoutF outF 0 V={SDT(U(V(in1) - T1)*U(V(in2) - T2)-V(outF)*koutF)}
.ENDS
********************************************************************

***** OR Subcircuit
.SUBCKT OR in1 in2 outF PARAMS: T1=0.5 T2=0.5 koutF=1
*** SUBCIRCUIT OR - Dynamic Boolean OR gate
*** Equation: outF = in1 AND in2 => d outF/dt = F[(F(in1,T1) +
F(in2,T2)),TOR] - kout*outF
*** Note: TOR=0.5
.PARAM TOR=0.5
BoutF outF 0 V={SDT(U((U(V(in1) - T1) + U(V(in2) - T2)) - TOR)
- V(outF)*koutF)}
.ENDS
*******************************************************************

6.3 Modeling and Simulation of Inferred
Genetic Networks

We produced a logic circuit schematic for the inferred Boolean Networks. The network
topology specified by the truth tables was used to produce the circuit netlist. Boolean
kinetics-based logic components (AND-, OR-, NOT-Gates) are dynamically implemented
to accommodate variable numbers of gene inputs (A. S. Sedra and K. C. Smith, 1991). The
initial genetic logic circuit was visualized using the ChileCAD Schematic Capture tool. We
simulate the Boolean circuit using the XyceTM Parallel Electronic Simulator. Simulation
allowed us to capture the time-varying response of the network and compare the response
of the inferred network to the microarray data. The goal is to develop a circuit schematic
that can reproduce the experimental data.

Simulation of Whole-Cell Gene Network

We used the Boolean kinetics framework to simulate the complete inferred gene network
of yeast. Time series microarray data for the yeast system was clustered into gene groups,
which are referred to a meta-genes. The time-dependent expression profile of each meta-
gene was discretized and served as the input to the genetic network inference algorithm
[21]. The algorithm produces a truth table that includes every possible input/output rela-
tionship for the node. Each meta-gene node, Y , will have 2k entries, where k is the number
of meta-gene nodes that influence the output of Y . As the k increases the size of the truth
table grows exponentially and the number of elements in the circuit grows substantially.
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Table 6.2. Example reduction of meta-gene three using
Espresso.

Espresso Input Espresso Output
.i 4
.o 1
.ilb n66 n44 n1 n0
.ob n3
.p 6
1000 1
1010 1
0110 1
1001 1
0011 1
1011 1
.e

.ilb n66 n44 n1 n0

.ob n3

.i 4

.o 1

.p 3
0110 1
10– 1
-011 1
.e

n3 = n66 ∗ n44 ∗ n1 ∗ n0 + n66 ∗ n44 + n44 ∗ n1 ∗ n0

Since the truth table representation is exhaustive and most likely redundant, simulation of
the complete truth table would be wasteful. We can apply rules from Boolean algebra to
produced a minimized representation of the inferred gene network. The minimized form
contains all of the behavioral relationships and leads to a simpler circuit realization.

We perform a two-level Boolean minimization on the truth table representation of the in-
ferred gene network using Espresso, a well-known logic simplification tool available from
the University of California, Berkeley (www-cad.eecs.Berkeley.edu/software/software.html)
[R. Katz, 1994]. We developed a software tool that receives a text file containing the in-
ferred network. The truth table specification of each node is reformatted into a separate
input file readable by Espresso. Espresso receives the encoded truth table representation
of each node and produces a minimized truth table file. The number of product terms
used to specify each node is minimized (i.e. the number of AND gates used to realize the
Boolean function is reduced). We extract the resulting Boolean equation for each node
from the Espresso output file. Each of the nodes in the gene network is processed in this
manner, yielding a minimized representation of the gene network. Table 6.2 demonstrates
the minimization process for meta-gene three (reduced from six to four product terms). It
lists the Espresso input for the logic one elements of the inferred truth table, the minimized
Espresso output file, and the resulting Boolean equation, which is simulated using Xyce.
Larger reductions occur for several meta-genes (e.g., meta-gene forty-six is reduced from
thirty-one to fourteen product terms and meta-gene seventy-one is reduced from thirty-six
to sixteen product terms).

We developed a Perl script, gene2cir.pl, for automatically generating Xyce equivalent cir-
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cuits from the truth table representation of the inferred gene network. Gene2cir.pl takes a
formatted text file that represents a genetic network, reduces each meta-gene node using
Espresso, and produces the corresponding netlist for the reduced, inferred gene network.
The below excerpt from the whole-cell yeast gene network simulation shows the netlist
entries for meta-gene forty-four (Figure 6.5 includes a schematic of meta-gene forty-four).

***************************************************************************
*Meta-gene 44 relevant netlist entries
********** NODE n0 *****
***** AND GATES FOR PRODUCT TERMS *****
xAnd_n0_0 n12in and_n0_0 and1
Rres_and_n0_0 and_n0_0 0 100K

***** OR GATE FOR SUM OF PRODUCT TERMS *****
xOr_n0 and_n0_0 n0 or1
Rres_n0 n0 0 100K

********** NODE n15 *****
***** AND GATES FOR PRODUCT TERMS *****
xAnd_n15_0 n47in_not n13in n0in_not and_n15_0 and3
Rres_and_n15_0 and_n15_0 0 100K
xAnd_n15_1 n13in_not n0in and_n15_1 and2
Rres_and_n15_1 and_n15_1 0 100K

***** OR GATE FOR SUM OF PRODUCT TERMS *****
xOr_n15 and_n15_0 and_n15_1 n15 or2
Rres_n15 n15 0 100K

********** NODE n44 *****
***** AND GATES FOR PRODUCT TERMS *****
xAnd_n44_0 n70in_not n0in_not and_n44_0 and2
Rres_and_n44_0 and_n44_0 0 100K
xAnd_n44_1 n15in n0in and_n44_1 and2
Rres_and_n44_1 and_n44_1 0 100K

***** OR GATE FOR SUM OF PRODUCT TERMS *****
xOr_n44 and_n44_0 and_n44_1 n44 or2
Rres_n44 n44 0 100K

********** NODE n70 *****
***** AND GATES FOR PRODUCT TERMS *****
xAnd_n70_0 n36in n16in_not n2in_not n1in_not and_n70_0 and4
Rres_and_n70_0 and_n70_0 0 100K
xAnd_n70_1 n36in n16in n2in n0in_not and_n70_1 and4
Rres_and_n70_1 and_n70_1 0 100K
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xAnd_n70_2 n36in_not n2in n1in_not n0in and_n70_2 and4
Rres_and_n70_2 and_n70_2 0 100K
xAnd_n70_3 n36in_not n16in_not n1in and_n70_3 and3
Rres_and_n70_3 and_n70_3 0 100K
xAnd_n70_4 n36in n16in n1in and_n70_4 and3
Rres_and_n70_4 and_n70_4 0 100K

***** OR GATE FOR SUM OF PRODUCT TERMS *****
xOr_n70 and_n70_0 and_n70_1 and_n70_2 and_n70_3 and_n70_4 n70 or5
Rres_n70 n70 0 100K

***** Voltage Input Values *****
Vn0init n0init 0 PULSE(0V 1V 0 0.05 0.05 1.8 1799)
xOr_n0init n0init n0 n0in or
Rres_n0init n0init 0 100
Rres_n0in n0in 0 100K
xNOT_n0in n0in n0in_not not
Rres_n0in_not n0in_not 0 100K

Vn15init n15init 0 PULSE(0V 0V 0 0.05 0.05 1.8 1799)
xOr_n15init n15init n15 n15in or
Rres_n15init n15init 0 100
Rres_n15in n15in 0 100K

Vn44init n44init 0 PULSE(0V 0V 0 0.05 0.05 1.8 1799)
xOr_n44init n44init n44 n44in or
Rres_n44init n44init 0 100
Rres_n44in n44in 0 100K
xNOT_n44in n44in n44in_not not
Rres_n44in_not n44in_not 0 100K

Vn70init n70init 0 PULSE(0V 1V 0 0.05 0.05 1.8 1799)
xOr_n70init n70init n70 n70in or
Rres_n70init n70init 0 100
Rres_n70in n70in 0 100K
xNOT_n70in n70in n70in_not not
Rres_n70in_not n70in_not 0 100K

***************************************************************************

Initial node values are inputs into gene2cir.pl. Nodes are asynchronously updated.

We use Xyce to simulate the eighty-one node (each node is a meta-gene) yeast gene
network. Results were compared to the original discretized signal. Figure 6.4 shows the
simulation output for meta-gene zero compared to the discretized microarray time series
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expression data. The two graphs are similar, which is not surprising given that meta-
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Figure 6.4. Comparison of the output of Xyce simulation (blue,
top curve) to discretized time series microarray data (red, bottom
curve) for meta-gene node zero.

gene zero has a simple gene network. A noticeable difference is the width of the two
curves, which can be addressed by adjusting the threshold point and parameters used
in the Boolean kinetics model of the logic gates. Figure 6.5 shows the simulation output
of meta-gene node forty-four and its corresponding input nodes and a comparison of the
Xyce simulation to the discretized microarray data. For this more complex example, it is
difficult to find similarities between the nodes (except for node zero, previously discussed).
We suspect that some of the observed variations between the simulation and discretized
data are due in part to the fact that the discretized data represents eighteen time points
whereas the simulation data represents multiple time steps. Application of a parameter
estimation tool, like DakotaTM , will help tune simulation parameters to produce results
consistent with the discretized microarray data.
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Figure 6.5. Comparison of Xyce simulation results (blue, top
graphs) for meta-gene Node 44 and Nodes 0, 15, and 70 (inputs
to Node 44) to discretized microarray data (red, bottom graphs).
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7. Simulating Escherichia
coli K-12

A major goal of this work is to demonstrate the feasibility of implementing a Xyce simulation
of a whole cell. Bacteriophage-λ was our original target organism. We modified our target
system to the Escherichia coli K-12 due to the availability of metabolic and gene regulatory
data. The whole cell model was constructed using the building blocks tested in the smaller
tryptophan and lactose systems.

7.1 The Whole-Cell Metabolic Model

Circuit Components for Whole-Cell Model

As in the tryptophan circuit models, we use capacitors coupled to resistors to store pro-
duced metabolites and dissipate consumed metabolites. Using a generalized, Michales-
Menten type equation, we use Xyce’s analog behavioral modeling element, the BSOURCE,
to model each reaction as:

Rate = CM × fRate× (SC1
1 )× (SC2

2 )

Reactions can be unidirectional or bidirectional. Unidirectional reactions are implemented
with a single BSOURCE element while bidirectional, or reversible reactions, are imple-
mented with two BSOURCE elements. For example, the following reaction is bidirectional:

G6P + NADP ↔ D6PGL + NADPH (7.1)

Table 7.1 lists the abbreviations for the metabolites involved. To implement we divide the
above into two reactions:

G6P + NADP → D6PGL + NADPH
D6PGL + NADPH → G6P + NADP

(7.2)

Figure 7.1 shows the circuit schematic for the reversible reaction. The corresponding netlist
is replicated below.

xRxn_G6PNADP_D6PGLNADPH G6P NADP D6PGL NADPH
enzyme enzymeNot nVdd nVddN Rxn2To2
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Table 7.1. Abbreviations for metabolites involved in example re-
versible reaction.

Abbreviation Metabolite
G6P Glucose 6-phosphate

NADP Nicotinamide adenine dinucleotide phosphate
D6PGL D-6-Phosphate-glucono-delta-lactone
NADPH Dihydronicotinamide adenine dinucleotide phosphate reduced

G6P
Rxn 2

NADP

D6PGL

NADPH
Rxn 1

Figure 7.1. Circuit schematic for a bidirectional metabolic reac-
tion.

PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 fRate=0.001
** REVERSIBLE
xRxn_D6PGLNADPH_G6PNADP D6PGL NADPH G6P NADP

enzyme enzymeNot nVdd nVddN Rxn2To2
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 fRate=0.001

We implement the two-substrate/two-product metabolic subcircuit as follows:

**** Rxn2To2 ****
.SUBCKT Rxn2To2 rnt1 rnt2 prd1 prd2 enzyme enzymeNot nVdd nVddN

PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 fRate=1.67e-5

.PARAM CapReact1=1

.PARAM CapReact2=1
*** Enzyme activity as a Tx switch
xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
xtx_rnt2 rnt2 rnt2in enzymeNot enzyme nVdd nVddN tx
Rres_rnt2in rnt2in 0 100K

*** Reaction - consume the reactants

58



7.1 The Whole-Cell Metabolic Model XyceTM Biological Modeling

BReact1 rnt1 0 I={r1Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) *
( (CapReact2 * V(rnt2in))**(r2Stio) ) }

BReact2 rnt2 0 I={r2Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) *
( (CapReact2 * V(rnt2in))**(r2Stio) ) }

*** Reaction - produce the products
BProd1 0 prd1 I={p1Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) *

( (CapReact2 * V(rnt2in))**(r2Stio) ) }
BProd2 0 prd2 I={p2Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) *

( (CapReact2 * V(rnt2in))**(r2Stio) ) }
.ENDS

As in the tryptophan and lactose circuit models, we use a transmission gate to simulate
the enzymatic control of metabolic processes. The enzymatic transmission gate is imple-
mented using a PMOS and NMOS with model parameters as shown in the netlist below.

***** Tx Gate Subcircuit
.SUBCKT TX inA outF clkL clkH nVdd nVddN
*** SUBCIRCUIT TRANSMISSION GATE
*** Equation: outF = inA (clkH=clk, clkL=NOT(clk))
Mp1 outF clkL inA nVdd cd4012_pmos l=5u w=270u
Mn1 inA clkH outF nVddN cd4012_nmos l=5u w=175u
.ENDS

********************************************************************
.MODEL cd4012_pmos PMOS (
+ LEVEL = 3 UO = 310 VTO = -1.6 NFS = 5.794E+10

TOX = 6E-08 NSUB = 5.701E+15
+ NSS = 0 VMAX = 5.374E+04 RS = 5.359 RD = 93.66

RSH = 0 IS = 1E-14
+ XJ = 7.9E-06 LD = 3E-08 DELTA = 0 THETA = 0.0278

ETA = 0.535 KAPPA = 0.643
+ KP = 1.711E-05 L=5u W=270u GAMMA=0.37 PHI=0.65

NFS=1E10
+ CBD=0.1P CBS=0.1P PB=0.81 CGSO=2P CGBO=4P CGDO=2P

CJ=2E-4 MJ=0.5 CJSW=1E-9
+ MJSW=0.5 JS=1E-8 TPG=0 KF=1E-25 AF=1 FC=0.5 TNOM=27)
**************************
.MODEL cd4012_nmos NMOS (
+ LEVEL = 3 UO = 190 VTO = 1.679 NFS = 2.368E+11

TOX = 6E-08 NSUB = 8.601E+15
+ NSS = 0 VMAX = 4.206E+04 RS = 13.21 RD = 11.59

RSH = 0 IS = 1E-14
+ VMAX = 4.206E+04 NFS=1E10 GAMMA=0.37 PHI=0.65
+ XJ = 7.1E-06 LD = 8.6E-07 DELTA = 0 THETA = 0.0021
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ETA = 0.057 KAPPA = 0.15
+ KP = 2.161E-05 L=5u W=175u
+ CBD=0.1P CBS=0.1P PB=0.81 CGSO=2P CGBO=4P CGDO=2P

CJ=2E-4 MJ=0.5 CJSW=1E-9
+ MJSW=0.5 JS=1E-8 TPG=0 KF=1E-25 AF=1 FC=0.5 TNOM=27)

Constructing the E.coli Metabolic Netlist

Our first model was a metabolism only model. We use stoichiometric data to generate the
wiring schematic for the whole-cell circuit. The stoichiometric data for E. coli metabolism
is from the website maintained by Bernhard Palsson’s lab at the University of California
San Diego(http://gcrg.ucsd.edu/ ). The original Excel spreadsheet was formatted and con-
verted to a text, comma-delimited file. This served as the input to path2cir.pl, a Perl script
we developed for automatically generating the Xyce equivalent metabolic circuit from sto-
ichiometric data. Due to the number of reactions involved, a method for automatically
generating the netlist is necessary and will help reduce input error. In addition to construct-
ing an automated netlist generator for delimitted text files, we began developing scripts to
process gene and metabolic network data for the BioCyc database. BioCyc is a public,
curated database of biological pathway data. Since it contains both stoichiometric infor-
mation and the corresponding gene regulatory network, constructing our netlist from this
database would be very useful and help give our simulation tool broader applicability.

We divide the metabolites into three categories reactants, products, and reactants/products.
The reactants are metabolites that are inputs to the system and consumed only; these are
set to initial voltage values of IC=1V. Products are metabolites that are made during the
course of the simulation and never used to make other metabolites. Products are set to ini-
tial capacitance values of IC=1e−5 while metabolites that are both reactants and products
are set to initial IC=1e−3. For this simulation we use a default reaction rate of 0.001 and
use a global enzyme to regulate the metabolic reactions for the system.

Figure 7.2 shows the XDamp screenshot for a thirty minute Xyce simulation of E. coli
whole-cell metabolic, circuit simulation. The horizontal axis is simulation time (in seconds)
and the vertical is the voltage of each node, which corresponds to the concentration of
each metabolite.

7.2 The Hybrid Whole-Cell Model
We construct a hybrid whole-cell model of E.coli that incorporates stoichiometric and gene
regulatory data into one circuit. Due to the availability and accessibility of data, we focus
on the central metabolic network and the genes that regulate central metabolism in E.coli.
The central metabolism metabolic and gene network model is based on supplemental
data from Covert and Palsson 2002[22]. The Covert-Palsson model (Figure 7.3 contained
sixteen regulatory proteins with forty-five of the seventy-three enzymes regulated.
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Figure 7.2. XDamp screenshot for the Xyce simulation results of
E. coli whole-cell, circuit simulation.
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Figure 7.3. The Covert-Palsson model of E.coli central
metabolism.
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Coupling Metabolic and Genetic Components

Metabolic components of the netlist are generated using path2cir.pl. The genetic reg-
ulatory components were then incorporated manually and the corresponding multi-input
logic subcircuits were included. The metabolic and genetic components are coupled using
the transmission gate component previously described. As an example, to implement the
metabolic reaction mediated by isocitrate lyase, we implement the metabolic reaction

ICIT → GLX + SUCC

using the genetic regulatory circuit

aceA = NOT (lclR)

we use the following netlist:

*Metabolic reaction controlled by AceA gene
** ACEA : ( Isocitrate lyase ) ICIT > GLX + SUCC
xRxn_ICIT_GLXSUCC ICIT GLX SUCC AceA AceANot nVdd nVddN Rxn1To2

PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 fRate=0.001

*Regulation of AceA
*aceA = IF (not (IclR))
xGn_aceA IclR AceA not
R_AceA AceA 0 100K
xGn_AceANot AceA AceANot not
R_AceANot AceANot 0 100K

*Subcircuits used for metabolic and gene network
*One to two metabolic subcircuit
**** Rxn1To2 ****
.SUBCKT Rxn1To2 rnt1 prd1 prd2 enzyme enzymeNot nVdd nVddN

PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 fRate=1.67e-5
.PARAM CapReact1=1
*** Enzyme activity as a Tx switch
xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
*** Reaction - consume the reactants
BReact1 rnt1 0 I={r1Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) }
*** Reaction - produce the products
BProd1 0 prd1 I={p1Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) }
BProd2 0 prd2 I={p2Stio * fRate * ( (CapReact1 * V(rnt1in))**(r1Stio) ) }
.ENDS

*Implementation of NOT subcircuit
***** NOT Subcircuit
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.SUBCKT NOT in1 outF PARAMS: koutF=0.5

.PARAM vMax=1

.PARAM TNot=0.5
BoutF outF 0 V={SDT(U(vMax-V(in1) - TNot) - V(outF)*koutF)}
.ENDS

We have two reactant elements, external glucose, GLCxt, and external ribose, RIBxt. To
simulate the growth of E.coli on a glucose medium we set the initial value of GLCxt=10.4V
and RIBxt=1V. Biomass, which is the cell biomass, is set to a negligible amount. All other
reactant-product metabolites were set to an initial value of IC=1e-2 except for Acetate,
which was set to IC=0.3V to be consistent with the initial conditions in Covert and Palsson
2002 [22]. We ran the netlist for a simulation time of ten hours. Figure 7.4 and Fig-
ure 7.5shows the results of the simulation for growth on a glucose medium for a thirty
minute simulation. The simulation shows an increase in biomass as glucose is consumed,
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Figure 7.4. Xyce simulation (30 minutes) of hybrid E.coli netlist.
(Top) External glucose consumption and (Bottom) Cell biomass
production.

which is the expected qualitative behavior.
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Figure 7.5. Xyce simulation (30 minutes) of hybrid E.coli netlist.
(Top) External acetate diffuses into cell and (Bottom) internal ac-
etate increases.
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The current implementation uses default reaction rates of 0.001. In order to incorporate
empirically determined reaction rates, such as those available in the BRENDA database,
we modify the BSOURCE implementation for simulating metabolic processes. We revisit
the tryptophan biosynthesis pathway to demonstrate how we can incorporate empirical
rate information into the Xyce simulation.
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8. Tryptophan Revisited:
Reformulating the
Metabolic Subcircuit
A challenge in the development of accurate biological network simulations for systems
biology is the availability of accurate rate data for metabolic reactions. Databases like
BRENDA (http://www.brenda.uni-koeln.de/ )contain empirically determined reaction rates
for various organisms including E.coli. Incorporation of this data will reduce the number of
unknown simulation parameters and provide boundaries for model refinement. Revisiting
our earlier Xyce model of tryptophan biosynthesis, we reformulate the BSOURCE model
to incorporate specific rate variables, incorporate rates from BRENDA, and couple the
Xyce model to the DAKOTA optimization framework to refine remaining model parameters
based on experimental time series data.

8.1 Reformulation of the Metabolic
BSOURCE Element

It is reasonable to formulate the metabolic reactions in a format that lends itself to available
data. We use the Michaelis-Menten equation to describe the reaction kinetics using the
Michaelis-Menten constant, KM , and the turnover rate, Kcat. Both rates are reported in
the BRENDA database.

The Michaelis-Menten equation for an enzyme catalyzed reaction provides an algebraic
description of the formation of a product P from substrate S, which is modified by the
enzyme E [23].

k1 k2

E + S 
 ES 
 E + P
k−1 k−2

(8.1)

As Equation 8.1 shows, The substrate must first associate with the enzyme, forming the
enzyme-substrate complex, ES at an association rate of k1. ES disassociates into enzyme
and product at a rate of k2 and disassociates into enzyme and unmodified substrate at a
rate of k−1. The reaction rate constants are k1, k−1, and k2. Early in the reaction the
concentration of product [P ] is negligible and we make the simplifying assumption that the
reverse resaction, P → ES, can be ignored. The reaction rate, V , is limited by the second
step, conversion of ES to P and can be written as

V = K2[ES]
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where [ES] is the concentration of the enzyme-substrate complex. Assuming an [S] � [E]
and that the system is in steady-state (relative equality in the formation and breakdown of
the enzyme-substrate complex) the following algebraic relationship emerges:

k1[E][S]
k−1 + k2

= [ES] (8.2)

The algebraic form for the reaction rate can be written as

V =
dP

dt
=

k2[Et][S]
k−1+k2

k1
+ [A]

(8.3)

where Et represents the total enzyme concentration. For now if we assume this is constant
for all reactions we can further simplify the reaction rate equation. The turnover rate, Kcat,
is equivalent to the number of substrate molecules converted to product in a given unit
of time on a single enzyme molecule when the enzyme is saturated with substrate [23].
Turnover rate can be equivalenced to the rate constant for the rate-limiting step. Assuming
that the breakdown of the enzyme-substrate complex to product, [ES] → [P ], is the rate
limiting step then we can equate turnover rate to k2. For the single substrate/single product
reaction, the reaction rate is

V =
dP

dt
=

Kcat[S]
KM + [A]

(8.4)

where
KM =

k−1 + k2

k1
(8.5)

We can extend this analysis to multiple substrate/multiple product systems if we maintain
the steady state assumption, constant total enzyme concentration, and that the break-
down of the enzyme-substrates complex is the limiting step. These assumptions cause the
rate equation to depend mainly on the number of inputs. For the tryptophan biosynthesis
metabolic network, the rate equations are of the form shown in Table 8.1 (derived using
the King-Altman method as described in http://www.biokin.com/king-altman/theory.html):

Below is an excerpt from the modified netlist for tryptophan biosynthesis that shows the
modified metabolic circuit and corresponding subcircuits, which simulates metabolic reac-
tions using the previously presented form.

***************************************************************************
Tryptophan Biosynthesis Circuit

.INCLUDE "param.cir"

** chor + gln -> glu + pyr + an
xRxn_ChorGln_GluPyrAn chor gln glu pyr an trpEDCBA trpEDCBANot
nVdd nVddN Rxn2To3 PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1
p3Stio=1 km1={km_chor} km2={km_gln} kcat={kcat_ChorGln}
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Table 8.1. Multi-substrate/multi-product reaction rate formulation.

Reaction Rate Equation KM Kcat

k1 k2

E + S 
 ES 
 E + P
k−1 k−2

Kcat[S]
KM+[P ]

k−1+k2

k1
k2

A+B → P+Q:
k1

A + E → EA
k2

EA + B 
 EAB
k−2

k3

EAB → P + EQ
k4

EQ → Q + E

Kcat[A][B]
[A][B]+KM,B [A]+KM,AKM,B

KM,A = k−1+k3

k1

KM,B = k−2+k3

k2

k3

** an + prpp -> ppi + npran
xRxn_AnPrpp_PpiNpran an prpp ppi npran trpEDCBA trpEDCBANot
nVdd nVddN Rxn2To2 PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1
km1={km_an} km2={km_prpp} kcat={kcat_AnPrpp}

** npran -> cpad5p
xRxn_Npran_Cpad5p npran cpad5p trpEDCBA trpEDCBANot nVdd nVddN
Rxn1To1 PARAMS: r1Stio=1 p1Stio=1 km1={km_npran} kcat={kcat_Npran}

** cpad5p -> co2 + igp
xRxn_Cpad5p_Co2Igp cpad5p co2 igp trpEDCBA trpEDCBANot nVdd nVddN
Rxn1To2 PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 km1={km_cpad5p}
kcat={kcat_Cpad5p}

** igp + ser -> t3p1 + trp
xRxn_IgpSer_T3p1Trp igp ser t3p1 trp trpEDCBA trpEDCBANot nVdd nVddN
Rxn2To2 PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 km1={km_igp}
km2={km_ser} kcat={kcat_IgpSer}

** Analysis
.TRAN 10 300 0 1

************************* Reaction Subcircuits
**** Rxn1To1 ****
.SUBCKT Rxn1To1 rnt1 prd1 enzyme enzymeNot nVdd nVddN
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PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 p3Stio=1 km1=1 kcat=1
*
* Modeling the simple reaction set of:
* r1Stio A -> p1Stio B
*
* with rate constant derived using King-Altman method, s.t.
* v = kcat [A] / (km1 + [A])
*
*** Enzyme activity as a Tx switch
xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
*
***Reaction - consume the reactants
**EMay mod to use URAMP function to prevent neg substrate vals
BCons1 rnt1 0 I={(1/r1Stio) *((kcat*URAMP(V(rnt1in)))/(km1 + URAMP(V(rnt1in))))}

***Reaction - produce products
BProd1 0 prd1 I={(1/p1Stio) *((kcat*URAMP(V(rnt1in)))/(km1 + URAMP(V(rnt1in))))}
*
.ENDS

**** Rxn1To2 ****
.SUBCKT Rxn1To2 rnt1 prd1 prd2 enzyme enzymeNot nVdd nVddN
PARAMS: r1Stio=1 p1Stio=1 p2Stio=1 km1=1 kcat=1
*
* Modeling the simple reaction set of:
* r1Stio A -> p1Stio B1 + p2Stio B2
*
* with rate constant derived using King-Altman method, s.t.
* v = kcat [A] / (km1 + [A])
*
*** Enzyme activity as a Tx switch
xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
*
***Reaction - consume the reactants
BCons1 rnt1 0 I={(1/r1Stio) *((kcat*URAMP(V(rnt1in)))/(km1 + URAMP(V(rnt1in))))}

***Reaction - produce products
BProd1 0 prd1 I={(1/p1Stio) *((kcat*URAMP(V(rnt1in)))/(km1 + URAMP(V(rnt1in))))}
BProd2 0 prd2 I={(1/p2Stio) *((kcat*URAMP(V(rnt1in)))/(km1 + URAMP(V(rnt1in))))}
*
*
.ENDS
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**** Rxn2To2 ****
.SUBCKT Rxn2To2 rnt1 rnt2 prd1 prd2 enzyme enzymeNot nVdd nVddN
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 km1=1 km2=1 kcat=1
*
* Modeling the simple reaction set of:
* r1Stio A1 + r2Stio A2 -> p1Stio B1 + p2Stio B2
*
* with rate constant derived using King-Altman method, s.t.
* v = kcat [A1][A2] / ([A1][A2] + km2[A1] + km1km2)
*
*** Enzyme activity as a Tx switch
xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
xtx_rnt2 rnt2 rnt2in enzymeNot enzyme nVdd nVddN tx
Rres_rnt2in rnt2in 0 100K
*
***Reaction - consume the reactants
BCons1 rnt1 0 I={(1/r1Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
BCons2 rnt2 0 I={(1/r2Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}

***Reaction - produce products
BProd1 0 prd1 I={(1/p1Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
BProd2 0 prd2 I={(1/p2Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
*
.ENDS

**** Rxn2To3 ****
.SUBCKT Rxn2To3 rnt1 rnt2 prd1 prd2 prd3 enzyme enzymeNot nVdd nVddN
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 p3Stio=1 km1=1 km2=1 kcat=1
**.SUBCKT Rxn2To3 rnt1 rnt2 prd1 prd2 prd3 enzyme enzymeNot nVdd nVddN
PARAMS: r1Stio=1 r2Stio=1 p1Stio=1 p2Stio=1 p3Stio=1 km1=1 km2=1 kcat=1
*
* Modeling the simple reaction set of:
* r1Stio A1 + r2Stio A2 -> p1Stio B1 + p2Stio B2 + p3Stio B3
*
* with rate constant derived using King-Altman method, s.t.
* v = kcat [A1][A2] / ([A1][A2] + km2[A1] + km1km2)
*
*** Enzyme activity as a Tx switch
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xtx_rnt1 rnt1 rnt1in enzymeNot enzyme nVdd nVddN tx
Rres_rnt1in rnt1in 0 100K
xtx_rnt2 rnt2 rnt2in enzymeNot enzyme nVdd nVddN tx
Rres_rnt2in rnt2in 0 100K
*
***Reaction - consume the reactants
BCons1 rnt1 0 I={(1/r1Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
BCons2 rnt2 0 I={(1/r2Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}

***Reaction - produce products
BProd1 0 prd1 I={(1/p1Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
BProd2 0 prd2 I={(1/p2Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
BProd3 0 prd3 I={(1/p3Stio) *((kcat*URAMP(V(rnt1in))*URAMP(V(rnt2in)))/
(URAMP(V(rnt1in))*URAMP(V(rnt2in)) + km2*URAMP(V(rnt1in)) + km1*km2))}
*
.ENDS
***************************************************************************

8.2 Optimization Framework for Model
Refinement

Using the rate reaction format in Table 8.1, we simulate the tryptophan synthesis, incor-
porating empirically determined rate information from the BRENDA database through a
parameter file. Below is a list of the fixed parameters used in the simulation.

.PARAM km_chor=1.2000000000e-03

.PARAM km_gln=3.6000000000e-01

.PARAM km_prpp=1.0000000000e-01

.PARAM km_npran=4.9000000000e-03

.PARAM km_cpad5p=3.4000000000e-04

.PARAM kcat_AnPrpp=4.4000000000e+00

.PARAM kcat_Npran=5.0000000000e+01

.PARAM kcat_Cpad5p=2.2000000000e+00

As in the Drosophila tissue differentiation simulations, we couple the Xyce netlist for trypto-
phan biosynthesis to DAKOTA optimization environment to find the optimal rate constants
for five of the thirteen rate constants in the metabolic pathway:

KAN
M ,KIGP

M ,KSER
M ,KChorGln

cat ,KIgpSer
cat
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Using empirical data from Bliss 1979 [24] we performed a least squares analysis, compar-
ing the output of Xyce (300 seconds of simulation data) to the data from Bliss. The Perl
script below was used to process the Xyce .PRN file and perform an error analysis based
on the empirical data:

***************************************************************************
#!/usr/local/bin/perl -w
#
# cmprSim2ExpData.pl <xyce output file>
#Compares Xyce simulation output files to experimental data for the
# simulated system.
#

# Begin Main package space
{
my $index;
my $indexMin;
my $indexMax;
my $simTime;
my $enzyme;
my $tryp;
my $line;
my @lineA;
my %trypExpData;
my %trypSimData;
my $maxExpTime=300;
my $timeKey;
my $objectiveF;

# Load experimental data for each available time point;
$trypExpData{0}=35;
$trypExpData{120}=100;
$trypExpData{180}=150;
$trypExpData{240}=200;
$trypExpData{300}=250;

# Initialize simulated data hash
$trypSimData{0}{sum}=0;
$trypSimData{0}{npnts}=1;
$trypSimData{120}{sum}=0;
$trypSimData{120}{npnts}=1;
$trypSimData{180}{sum}=0;
$trypSimData{180}{npnts}=1;
$trypSimData{240}{sum}=0;
$trypSimData{240}{npnts}=1;
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$trypSimData{300}{sum}=0;
$trypSimData{300}{npnts}=1;

#read in info
$line=<>; #read in first line
$simTime=0;
while($line=<>)
{
if ($simTime < $maxExpTime)
{
($index, $simTime, $enzyme, $tryp, @lineA)=split ’ ’,$line;
#remove excess whitespace
$index=~s/\s//g;
if ($index ne ’End’)
{
$simTime=~s/\s//g;
$simTime=int($simTime);
if ($trypSimData{$simTime}{npnts})
{
#add to sim data hash
$tryp=~s/\s//g;
$trypSimData{$simTime}{sum} = $trypSimData{$simTime}{sum} + $tryp;
$trypSimData{$simTime}{npnts} = $trypSimData{$simTime}{npnts} + 1;
##print "\n --$index--$simTime--$enzyme--$tryp-- \n";
}
} #end if index ne end
} # end if simtime lt maxexptime
} # end while
# calculate objective function and print it out
$objectiveF=0;
foreach $timeKey (keys %trypExpData)
{
$trypSimData{$timeKey}{npnts}=$trypSimData{$timeKey}{npnts}-1;
if ($trypSimData{$timeKey}{npnts} > 0)
{
$objectiveF=$objectiveF + ($trypExpData{$timeKey} -
($trypSimData{$timeKey}{sum}/$trypSimData{$timeKey}{npnts}));
$trypSimData{$timeKey}{objF}=$trypExpData{$timeKey} -
($trypSimData{$timeKey}{sum}/$trypSimData{$timeKey}{npnts});
}
}
# for least squares
printf "%.20f f \n", $trypSimData{0}{objF};
printf "%.20f f \n", $trypSimData{120}{objF};
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printf "%.20f f \n", $trypSimData{180}{objF};
printf "%.20f f \n", $trypSimData{240}{objF};
printf "%.20f f \n", $trypSimData{300}{objF};

}
# end main package space
exit;
***************************************************************************

Based on the error analysis, DAKOTA generated new values for the rate constants, which
were incorporated into a parameter file included in the Xyce netlist. Figure 8.1 shows the
results of several DAKOTA-Xyce iterations. The horizontal axis is time and the vertical
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Figure 8.1. Comparison of Xyce tryptophan biosynthesis to ex-
perimental data.

shows the concentration of tryptophan for the empirical data set and the simulated data
set. Plots of externally provided and intermediate metabolites show quick consumption of
substrate metabolites. Optimization over all rate constants and initial values for externally
provided substrates may result in successful parameter estimation for the given empirical
data.

Coupling the Xyce biological circuit simulation tool with DAKOTA and available empirical
data provides a framework for elucidating unknown reaction rates and provides a more
reliable models for systems biology applications. The approach used in this chapter can
be extended to refine whole-cell network models and provide quantitative results that will
be useful to experimentalists.
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Biochemical Circuit Devices

This appendix includes circuit devices useful to biological and chemical simulations. The
devices are presented as subcircuits as this make the underlying operations evident and
allows one to change the devices if needed.
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A Chemcial channel
*
* Chemical channnel subcircuit
*
* This is simple a capacitor to allow for the accumulation
* of material and a path to ground
*
.SUBCKT ChemCh chNode PARAMS: chCon=1e-16

Ccch1 chNode 0 1 IC=chCon
Rrch1 chNode 2 1e12

.ENDS
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B Power law based reactions

*
* Simple Reactions and Analogs as Subcircuit
*
* For each of the following reactions, we
* assume that there is a 1 farad capacitor on
* each node entering each subcurcuit. While 1 farad
* capacitors are unrealistic, they make
* interpretation of the results easier, i.e. voltage
* on a given capicator will equal the molar
* concentration of given species. If we included a
* capacitor on each subcurcuit, then we would end up
* with multiple capacitors in parallel and that would
* confuse the interpretation of restuls

*
*
* Reactions starting with 1 reactant ---------------------------
*
*

.SUBCKT Rxn1To1 rnt1 prd1
+ PARAMS: r1Stio=1
+ p1Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A -> p1Stio B
*
* with a forward rate constant of fRate.
*

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * V(rnt1)**(r1Stio)
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * V(rnt1)**(r1Stio)
*
.ENDS
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.SUBCKT Rxn1To2 rnt1 prd1 prd2
+ PARAMS: r1Stio=1
+ p1Stio=1 p2Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A -> p1Stio B + p2Stio C
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
*
.ENDS

.SUBCKT Rxn1To3 rnt1 prd1 prd2 prd3
+ PARAMS: r1Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A -> p1Stio B + p2Stio C + p3Stio D
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( SGN( V(rnt1) ) *

( V(rnt1)**(r1Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( SGN( V(rnt1) ) *
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+ ( V(rnt1)**(r1Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
*
.ENDS

.SUBCKT Rxn1To4 rnt1 prd1 prd2 prd3 prd4
+ PARAMS: r1Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A -> p1Stio B + p2Stio C + p3Stio D + p4Stio E
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
*
.ENDS

.SUBCKT Rxn1To5 rnt1 prd1 prd2 prd3 prd4 prd5
+ PARAMS: r1Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1 p5Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A -> p1Stio B + p2Stio C + p3Stio D + p4Stio E
*
* with a forward rate constant of fRate.
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* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
BProd5 0 prd5 I=p5Stio * fRate * ( SGN( V(rnt1) ) *
+ ( V(rnt1)**(r1Stio)) )
*
.ENDS

*
*
* Reactions starting with 2 reactants ---------------------------
*
*

.SUBCKT Rxn2To1 rnt1 rnt2 prd1
+ PARAMS: r1Stio=1 r2Stio=1
+ p1Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B -> p1Stio C
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
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BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
*
.ENDS

.SUBCKT Rxn2To2 rnt1 rnt2 prd1 prd2
+ PARAMS: r1Stio=1 r2Stio=1
+ p1Stio=1 p2Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B -> p1Stio C + p2Stio D
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
*
.ENDS

.SUBCKT Rxn2To3 rnt1 rnt2 prd1 prd2 prd3
+ PARAMS: r1Stio=1 r2Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B -> p2Stio C + p2Stio D
*
* with a forward rate constant of fRate.
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* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
*
.ENDS

.SUBCKT Rxn2To4 rnt1 rnt2 prd1 prd2 prd3 prd4
+ PARAMS: r1Stio=1 r2Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B ->
* p2Stio C + p2Stio D + p3Stio E + p4Stio F
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
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*
.ENDS

.SUBCKT Rxn2To5 rnt1 rnt2 prd1 prd2 prd3 prd4 prd5
+ PARAMS: r1Stio=1 r2Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1 p5Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B ->
* p2Stio C + p2Stio D + p3Stio E + p4Stio F + p5Sto G
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
BProd5 0 prd5 I=p5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) )
*
.ENDS

*
*
* Reactions starting with 3 reactants --------------------------
*
*
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.SUBCKT Rxn3To1 rnt1 rnt2 rnt3 prd1
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1
+ p1Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C -> p1Stio D
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
*
.ENDS

.SUBCKT Rxn3To2 rnt1 rnt2 rnt3 prd1 prd2
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1
+ p1Stio=1 p2Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C -> p1Stio D + p2Stio E
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
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* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
*
.ENDS

.SUBCKT Rxn3To3 rnt1 rnt2 rnt3 prd1 prd2 prd3
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C ->
* p1Stio D + p2Stio E + p3Stio F
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
*
.ENDS

.SUBCKT Rxn3To4 rnt1 rnt2 rnt3 prd1 prd2 prd3 prd4
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1
+ fRate=1
*
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* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C ->
* p1Stio D + p2Stio E + p3Stio F + p4Stio G
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
*
.ENDS

.SUBCKT Rxn3To5 rnt1 rnt2 rnt3 prd1 prd2 prd3 prd4 prd5
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1 p5Stio=1
+ fRate=1
*
* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C ->
* p1Stio D + p2Stio E + p3Stio F + p4Stio G + p5Stio H
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
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+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
BProd5 0 prd5 I=p5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) )
*
.ENDS

*
*
* Reactions starting with 4 reactants --------------------------
*
*

.SUBCKT Rxn4To1 rnt1 rnt2 rnt3 rnt4 prd1
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1
+ p1Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D -> p1Stio E
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
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+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

.SUBCKT Rxn4To2 rnt1 rnt2 rnt3 rnt4 prd1 prd2
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1
+ p1Stio=1 p2Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D -> p1Stio E + p2Stio F
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

.SUBCKT Rxn4To3 rnt1 rnt2 rnt3 rnt4 prd1 prd2 prd3
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1
+ fRate=1
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* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D ->
* p1Stio E + p2Stio F + p3Stio G
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

.SUBCKT Rxn4To4 rnt1 rnt2 rnt3 rnt4 prd1 prd2 prd3 prd4
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D ->
* p1Stio E + p2Stio F + p3Stio G + p4Stio H
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
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+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

.SUBCKT Rxn4To5 rnt1 rnt2 rnt3 rnt4 prd1 prd2 prd3 prd4 prd5
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1 p5Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D ->
* p1Stio E + p2Stio F + p3Stio G + p4Stio H + p5Stio I
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
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BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
BProd5 0 prd5 I=p5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

*
*
* Reactions starting with 5 reactants ---------------------------
*
*

.SUBCKT Rxn5To1 rnt1 rnt2 rnt3 rnt4 rnt5 prd1
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1 r5Stio=1
+ p1Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D + r5Stio E -> p1Stio F
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons5 rnt5 0 I=r5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
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* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS

.SUBCKT Rxn5To2 rnt1 rnt2 rnt3 rnt4 rnt5 prd1 prd2
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1 r5Stio=1
+ p1Stio=1 p2Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D + r5Stio E ->
* p1Stio F + p2Stio G
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons5 rnt5 0 I=r5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
*
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.ENDS

.SUBCKT Rxn5To3 rnt1 rnt2 rnt3 rnt4 rnt5 prd1 prd2 prd3
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1 r5Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D + r5Stio E ->
* p1Stio F + p2Stio G + p3Stio H
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons5 rnt5 0 I=r5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS
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.SUBCKT Rxn5To4 rnt1 rnt2 rnt3 rnt4 rnt5 prd1 prd2 prd3 prd4
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1 r5Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D + r5Stio E ->
* p1Stio F + p2Stio G + p3Stio H + p4Stio I
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons5 rnt5 0 I=r5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS
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.SUBCKT Rxn5To5 rnt1 rnt2 rnt3 rnt4 rnt5 prd1 prd2 prd3 prd4 prd5
+ PARAMS: r1Stio=1 r2Stio=1 r3Stio=1 r4Stio=1 r5Stio=1
+ p1Stio=1 p2Stio=1 p3Stio=1 p4Stio=1 p5Stio=1
+ fRate=1

* In this subcircuit we’re modeling the simple reaction
* set of:
* r1Stio A + r2Stio B + r3Stio C + r4Stio D + r5Stio E ->
* p1Stio F + p2Stio G + p3Stio H + p4Stio I + p5Stio J
*
* with a forward rate constant of fRate.

* Forward Reaction
* consume the reactants
BCons1 rnt1 0 I=r1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons2 rnt2 0 I=r2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons3 rnt3 0 I=r3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons4 rnt4 0 I=r4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BCons5 rnt5 0 I=r5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
* produce a product
BProd1 0 prd1 I=p1Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd2 0 prd2 I=p2Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd3 0 prd3 I=p3Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd4 0 prd4 I=p4Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
BProd5 0 prd5 I=p5Stio * fRate * ( ( V(rnt1)**(r1Stio)) *
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+ ( V(rnt2)**(r2Stio)) * ( V(rnt3)**(r3Stio)) *
+ ( V(rnt4)**(r4Stio)) * ( V(rnt4)**(r4Stio)) )
*
.ENDS
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C Enzymaticly controlled reactions

*
* Simple Transformations of a species.
*
* Here we model B -> B’ not as a reaction
* but as a maximally limited rate proces
* i.e. a reaction roughly linear at low
* concentration but limited at hight
* driving rate.
*
* Typically,
*
* dB/dt = vmax ( A**vrate / (ahalf + A**vrate) );
*
* Where A is not consumed (acts like an enzyme)
* but B and B’ are changed
*
* Promoters and Repressors can influcence
* the maximal rate and are handled by additional
* subcircuits.
*

.FUNC enzRate( pc, pwr, phalf ) (pc)**(pwr) /
+ ( (phalf)**(pwr) + (pc)**(pwr) )

*
*
* A -> A’ with one promoter
*
*
.SUBCKT Tfm1To1w1p rnt1 prd1 prom1
+ PARAMS: vmax=1
+ phalf=1
+ prate=1

* remove reactants
BReac1 rnt1 0 I= V(rnt1) * vmax * ( V(prom1)**(prate) ) /
+ (phalf**(prate) + V(prom1)**(prate))

* produce a product
BProd1 0 prd1 I= V(rnt1) * vmax * ( V(prom1)**(prate) ) /
+ (phalf**(prate) + V(prom1)**(prate))
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.ENDS

*
*
* A -> A’ with one promoter and one repressor
*
*
.SUBCKT Tfm1To1w1p1r rnt1 prd1 prom1 rep1
+ PARAMS: vmax=1
+ phalf=1
+ prate=1
+ rhalf=1
+ rrate=1

* remove reactants
BReac1 rnt1 0 I= V(rnt1) * vmax *
+ ( ( (V(prom1)* (1.0 - enzRate( V(rep1), rrate, rhalf )))**(prate) ) /
+ ((phalf)**(prate) + (V(prom1)*
+ (1.0 - enzRate( V(rep1), rrate, rhalf )))**(prate)) )
* produce a product
BProd1 0 prd1 I= V(rnt1) * vmax *
+ ( ( (V(prom1)* (1.0 - enzRate( V(rep1), rrate, rhalf )))**(prate) ) /
+ ((phalf)**(prate) + (V(prom1)*
+ (1.0 - enzRate( V(rep1), rrate, rhalf )))**(prate)) )

.ENDS
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