ALEGRA-MHD: Version 4.6

Thomas A. Haill, Kyle R. Cochrane, Christopher J. Garasi, Thomas A. Mehlhorn, Allen C. Robinson, and Randall M. Summers

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.
Abstract

ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamic, thermal conduction, and radiation emission effects.
Acknowledgment

The authors wish to acknowledge the contributions of Kent Budge to early draft versions of this manual and associated algorithms in the areas of thermal conduction, emission and opacity modeling.

Pavel Bochev has made important contributions to the description and understanding of the edge element discretization for the 3D magnetics. Jonathan Hu and Ray Tuminaro have been instrumental in the development and implementation of the algebraic multigrid software.

Bob Campbell, Dan Carroll, Mike Desjarlais, Ray Lemke, Bryan Oliver, Steve Rosenthal, and Erik Wemlinger have used and tested the MHD physics options in the ALEGRA-MHD code and provided invaluable feedback.

We would also like to acknowledge the support of the members of the NEVADA framework development team and the rest of the ALEGRA development team. Their perpetual assistance in areas of team leadership, architecture, configuration management, regression testing, Diatom insertion, remap and advection, and more, have been invaluable.

We would also like to acknowledge the support of the managers of the HEDP Theory & ICF Target Design and the Computational Physics Research & Development departments, both past and present. Their constancy of vision over many years of development has allowed this project to arrive at full fruition.
Contents

1 Introduction to ALEGRA-MHD .. 13
 1.1 New for Version 4.6 .. 14

2 General Input .. 16
 2.1 Format and Syntax .. 16
 2.1.1 Keywords .. 16
 2.1.2 Delimiters .. 16
 2.1.3 Comments .. 17

3 Execution Control .. 18
 3.1 Job Initiation and Termination 18
 3.1.1 Units .. 18
 3.2 I/O Control .. 19
 3.2.1 Plot Variables ... 19

4 General Physics Input ... 23
 4.1 Physics Choices .. 24
 4.2 Block Input .. 26
 4.3 Aztec Set .. 26

5 Magnetohydrodynamics Input .. 29
 5.1 Algorithm Control .. 29
 5.1.1 Density Floor ... 30
 5.1.2 Hydrodynamic Force Density Floor 30
 5.1.3 Lorentz Force Density Floor 31
 5.1.4 Material Fraction Force Limit 32

6 Transient Magnetics Input ... 34
 6.1 Formulation .. 36
 6.2 Time Step Control .. 37
 6.2.1 Start .. 37
 6.2.2 Stop .. 37
 6.2.3 Delta Time .. 37
 6.2.4 Alfven Density Floor 39
 6.2.5 Alfven Velocity Maximum 39
 6.3 Algorithm Control .. 40
 6.3.1 A Rezone .. 40
 6.3.2 Alpha ... 40
 6.3.3 Aztec Set .. 40
 6.3.4 Conserve Memory ... 42
 6.3.5 Magnetic Field ... 42
 6.3.6 Magnetic Force ... 42
 6.3.7 Current Density ... 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.8</td>
<td>Joule Heat</td>
<td>43</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Joule Heat Density Floor</td>
<td>44</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Electrical Conductivity Density Floor</td>
<td>45</td>
</tr>
<tr>
<td>6.3.11</td>
<td>Void Conductivity</td>
<td>46</td>
</tr>
<tr>
<td>6.3.12</td>
<td>Void Reluctivity</td>
<td>46</td>
</tr>
<tr>
<td>6.4</td>
<td>Boundary Conditions</td>
<td>46</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Uniform H BC</td>
<td>46</td>
</tr>
<tr>
<td>6.4.2</td>
<td>E Tangent BC</td>
<td>47</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Cylindrical Axial Slot BC</td>
<td>48</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Cylindrical Radial Slot BC</td>
<td>52</td>
</tr>
<tr>
<td>6.4.5</td>
<td>E Normal Return Current BC</td>
<td>55</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Centerline BC</td>
<td>57</td>
</tr>
<tr>
<td>6.5</td>
<td>Magnetic Flux Density Initial Conditions</td>
<td>57</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Diffuse Initial Field</td>
<td>58</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Uniform Initial Field</td>
<td>58</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Uniform Planar Current</td>
<td>59</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Uniform Axial Current</td>
<td>61</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Mean Initial Field</td>
<td>64</td>
</tr>
<tr>
<td>6.5.6</td>
<td>User Defined</td>
<td>65</td>
</tr>
<tr>
<td>6.6</td>
<td>Coupled Circuit Equations</td>
<td>67</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Circuit Solver</td>
<td>68</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Circuit Node</td>
<td>69</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Circuit Element</td>
<td>70</td>
</tr>
<tr>
<td>6.7</td>
<td>Current Tally</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Thermal Conduction Input</td>
<td>74</td>
</tr>
<tr>
<td>7.1</td>
<td>Time Step Control</td>
<td>74</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Time Step Scale, f</td>
<td>74</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Minimum Temperature, T_{min}</td>
<td>75</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Minimum Density, ρ_{min}</td>
<td>75</td>
</tr>
<tr>
<td>7.2</td>
<td>Algorithm Control</td>
<td>75</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Aztec Set</td>
<td>75</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Conserve Memory</td>
<td>75</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Thermal Conductivity Density Floor</td>
<td>76</td>
</tr>
<tr>
<td>7.3</td>
<td>Boundary Conditions</td>
<td>76</td>
</tr>
<tr>
<td>7.3.1</td>
<td>No Heat Flux</td>
<td>76</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Prescribed Heat Flux</td>
<td>77</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Temperature BC</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>Emission Input</td>
<td>78</td>
</tr>
<tr>
<td>8.1</td>
<td>Emission Model Options</td>
<td>79</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Planck Emission</td>
<td>79</td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrodynamic & Lorentz Force Density Floor Multiplier</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Material Fraction Force Limiter for MHD.</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Joule Heat Density Floor</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Electrical Conductivity Density Floor</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Geometry for the Cylindrical Axial Slot boundary condition</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Current density streamlines from 3D cylindrical axial slot application</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Current density streamlines from a periodic 3D cylindrical axial slot appli-</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>cation</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Current density streamlines from 3D cylindrical axial slot application</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>Geometry for the Cylindrical Radial Slot boundary condition</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>Geometry for the E Normal Current Return boundary condition</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>Geometry for the Uniform Planar Current initial condition</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>Geometry for the Axial Current initial condition</td>
<td>62</td>
</tr>
<tr>
<td>13</td>
<td>Magnetic field streamlines from 3D user defined magnetic field example</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Simple circuit model for the Z accelerator</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>Thermal Conductivity Density Floor</td>
<td>77</td>
</tr>
<tr>
<td>16</td>
<td>Maximum Emission Density Multiplier</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>Minimum Emission Temperature Multiplier</td>
<td>85</td>
</tr>
</tbody>
</table>
Tables

1. Systems of Units .. 20
2. Plot Variables for TRANSIENT MAGNETICS. 21
3. Plot Variables for THERMAL CONDUCTION. 22
4. Plot Variables for EMISSION. 22
5. Physics Options and Parent Classes. 24
6. Physics Option Modifiers. ... 25
7. BLOCK Remap Sub-Keywords. 26
8. Values of Constants for Various Systems of Units 35
9. Material Model Types and Model Names. 95
10. Obsolete Material Model Types and Model Names. 96
11. Predefined Materials for LMD. 99
12. Tuned Materials for LMD. ... 100
13. Input Parameters for LMD. ... 100
14. Registered Plot Variables for LMD. 103
15. Input Parameters for SPITZER. 106
16. Registered Plot Variables for SPITZER. 107
17. Input Parameters for EC ANOMALOUS. 108
18. Registered Plot Variables for EC ANOMALOUS. 109
19. Input Parameters for EC KNOEPFEL. 110
20. Registered Plot Variables for EC KNOEPFEL. 110
21. Input Parameters for KEC SESAME. 111
22. Registered Plot Variables for KEC SESAME. 111
23. Input Parameters for CONSTANT THERMAL CONDUCTIVITY. 112
24. Registered Plot Variables of CONSTANT THERMAL CONDUCTIVITY. 112
25. Input Parameters for PLASMA ... 113
26. Registered Plot Variables of PLASMA. 114
27. Input Parameters for POLYNOMIAL. 114
28. Registered Plot Variables of POLYNOMIAL. 115
29. Input Parameters for KTC SESAME. 115
30. Registered Plot Variables of KTC SESAME. 115
31. Input Parameters for KRAMERS FITTED. 118
32. Registered Plot Variables for KRAMERS FITTED. 119
33. Input Parameters for XSN. .. 120
34. Registered Plot Variables for XSN. 123
35. Input Parameters for SAHA IONIZATION. 125
36. Registered Plot Variables of SAHA IONIZATION. 125
37. Input Parameters for KZB SESAME. 126
38. Registered Plot Variables of KZB SESAME. 126
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Global Tallies for All Physics Options.</td>
<td>127</td>
</tr>
<tr>
<td>40</td>
<td>Global Tallies for TRANSIENT MAGNETICS.</td>
<td>127</td>
</tr>
<tr>
<td>41</td>
<td>Global Tallies for CIRCUIT SOLVER.</td>
<td>130</td>
</tr>
<tr>
<td>42</td>
<td>Global Tallies for THERMAL CONDUCTION.</td>
<td>130</td>
</tr>
<tr>
<td>43</td>
<td>Global Tallies for EMISSION.</td>
<td>131</td>
</tr>
</tbody>
</table>
Nomenclature

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE</td>
<td>Arbitrary Lagrangian Eulerian</td>
</tr>
<tr>
<td>ALEGRA</td>
<td>Arbitrary Lagrangian Eulerian General Research Application</td>
</tr>
<tr>
<td>ICF</td>
<td>Inertial Confinement Fusion</td>
</tr>
<tr>
<td>MHD</td>
<td>Magnetohydrodynamics</td>
</tr>
<tr>
<td>MMALE</td>
<td>Multi-Material ALE</td>
</tr>
<tr>
<td>QMD</td>
<td>Quantum Molecular Dynamics</td>
</tr>
<tr>
<td>SMALE</td>
<td>Single-Material ALE</td>
</tr>
</tbody>
</table>
ALEGRA-MHD: Version 4.6

1 Introduction to ALEGRA-MHD

This manual describes the additional features found within ALEGRA to simulate resistive magnetohydrodynamic (MHD) environments (hereafter referred to as ALEGRA-MHD). MHD environments require a wide range of physics phenomena to be modeled. This includes hydrodynamics, solid mechanics, transient magnetics, thermal conduction, and radiation emission. This manual provides a supplement to the ALEGRA User's Manual [4] and follows the pattern set therein. The manual is primarily intended as a reference guide and not as a tutorial or self-contained user's manual, however input deck examples have been provided for clarity.

ALEGRA-MHD includes only those physics capabilities which might be needed to simulate solid- & hydrodynamic environments subjected to magnetic field effects such as Lorentz forces and Joule heating. A simple radiation emission model is included for purposes of radiating excess energy. The thermal transport model is included as well as a means of smoothing the highly localized energy sources which can develop due to Joule heating. Applications which require true radiation transport coupled with MHD are referred to the ALEGRA-HEDP code.

The 2D version of ALEGRA-MHD supports both Cartesian (XY) and cylindrical (RZ) geometries. In 2D Cartesian (XY) MHD modeling [9, 10] the magnetic field \(\vec{B} = (B_x, B_y) \) may be in the plane of the mesh and the current density \(J_z \) is orthogonal to the plane, or else the magnetic field \(B_z \) may be orthogonal to the plane of the mesh and the current density \(\vec{J} = (J_x, J_y) \) is in the plane. For 2D cylindrical (RZ) MHD modeling, the magnetic field \(B_\theta \) may only be orthogonal to the plane of the mesh and the current density \(\vec{J} = (J_r, J_\theta) \) is in the plane. The 2D code supports unstructured quadrilateral grids.

The 3D version of ALEGRA-MHD supports 3D Cartesian (XYZ) MHD modeling on unstructured grids. The 3D code implements a magnetic diffusion solution based on edge and face elements [2]. A discrete, divergence free property is maintained both in the magnetics solve and during a constrained transport algorithm in the remap phase. The magnetic flux density is represented in terms of face elements with the element magnetic flux on faces as degrees of freedom. The 3D code supports unstructured hexahedral grids.

Self-consistent transfer of energy to and from external lumped element circuit equations may be modeled. Coupled circuit equations allow a set of differential-algebraic equations to be coupled to the transient magnetic or MHD simulations. This is useful in situations where
the simulation is driven by a known voltage source (most magnetic boundary conditions require knowledge of the current) or where the dynamics of the system being modeled feeds-back into the electrical response of the external circuit. This feature is fully described in Section 6.6 on page 67.

The TRANSIENT MAGNETICS package uses the Aztec library [28] to solve the discrete partial differential equation that governs its physics. Aztec is an iterative solver library with many options for solving linear systems of equations. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES), and stabilized biconjugate gradient (BiCGSATB). An algebraic multigrid option [27] for the edge element diffusion formulation in 3D and node-centered 2D formulations are available. These features are fully described in Section 9 on page 88.

An implicit thermal transport modeling capability is available. The current discretization is based on a support operator technique implemented by Kent Budge which has fundamental unknowns as thermal fluxes on faces. The THERMAL CONDUCTION package also uses the Aztec library. No multigrid capability is available in this case, but it is generally unnecessary.

Significant progress has been made at Sandia with respect to conductivity modeling in the solid-liquid-vapor transitions regions. Mike Desjarlais has been the principal theoretical lead in this effort. The LMD models are currently seen as the preferred capabilities. The user is advised to stay abreast of these rapidly advancing development as results are highly dependent on proper models [5, 6].

Radiation emission and opacity models are available. The emission model accounts for re-absorption by reducing the emission rate by a factor equal to one minus the probability of escape. For one group emission, the XSN opacity model can be made more accurate at lower temperatures through the use of the DYNAMIC INTEGRATION option for determining group bounds and the HAGEN RUBENS option. See Section 10.6.2 on page 119 for details.

1.1 New for Version 4.6

ALEGRA-MHD Version 4.6 is an update release compatible with the release of the base ALEGRA code [4]. This section briefly describes the new features added since Version 4.0.

A new preferred method of initializing magnetic field has been incorporated into ALEGRA. The INITIAL B FIELD, USER DEFINED, [A|B] keyword replaces many of the previous INITIAL B FIELD keywords. The new method employs user defined C-language code included in the input deck. A special runtime compiler reads the user defined code,
evaluates the expressions, stores the result into the appropriate ALEGRA variables.

One feature among many MHD computer codes that is unique to ALEGRA, is the ability to run simulations using "void." Void is that fraction of a mesh elements volume that is not occupied by any real material. One difficulty encountered in simulating MHD instabilities is that the growth of instabilities cannot saturate when using void. Other MHD codes circumvent this difficulty by using a low-density background material and suitable density floors to suppress unwanted physical phenomena. The ALEGRA-MHD user now has the ability to set select density floors akin to other MHD codes.

New HYDRO FORCE DENSITY FLOOR and LORENTZ FORCE DENSITY FLOOR keywords can be used in lieu of the MATERIAL FRACTION FORCE LIMITER to limit the calculation of forces on vertices with very little mass, thereby prohibiting mesh elements from becoming inverted and causing the calculation to terminate.

The JOULE HEAT DENSITY FLOOR is another feature that is built into ALEGRA allowing the ability to selectively turn off Joule heating for low-density materials. The ELECTRICAL CONDUCTIVITY DENSITY FLOOR and THERMAL CONDUCTIVITY DENSITY FLOOR keywords can limit the diffusion of the magnetic field and the material temperature in regions of the mesh with very little mass. These features allow low density regions to behave akin to void.

Finally, the DENSITY FLOOR keyword allows the user to specify a minimal material density in the mesh. One keyword applies to all materials. This keyword forces ALEGRA to boost cell densities up to the specified DENSITY FLOOR when they would otherwise fall below this value.

Two new materials have been added to the list of materials defined for the LMD electrical-thermal conductivity model: gold (Z = 79) and air (MATERIAL = ‘air’). New keywords also have been added to the LMD model: PRESSURE IONIZATION PREFACTOR, PRESSURE IONIZATION EXPONENT, DIPOLE ALPHA, EXTERNAL ZBAR, TUNED ALUMINUM, and MATERIAL.

New keywords have been added to the XSN opacity model: EXTRA ELECTRONS PER NUCLEUS, EXTRA Z SQUARED PER NUCLEUS, OPACITY MULTIPLIER, and DYNAMIC INTEGRATION.

Documentation of the global output variables associated with the CIRCUIT SOLVER is included in this manual. See Table 41 in Section 11 for details.

A new MAXIMUM ENERGY CHANGE keyword has been added to the emission model. This optional keyword allows the user to limit the maximum change in the material specific internal energy due to emission.
2 General Input

2.1 Format and Syntax

ALEGRA takes as input a text file containing free format lines built around keywords or keyword groups. With few exceptions, the keywords or keyword groups may be in any order the user finds convenient. This section repeats some of the syntax rules from the primary ALEGRA User’s Manual [4]. For additional input syntax, such as common parameter constructs, see the ALEGRA User’s Manual.

2.1.1 Keywords

A keyword is a short sequence of English words denoting some action or quantity. For example,

```
TITLE
MAGNETOHYDRODYNAMICS CONDUCTION
LORENTZ FORCE DENSITY FLOOR
MATERIAL FRACTION FORCE LIMIT
```

are all examples of keywords.

The input routines are case insensitive and only enough characters of each word of a keyword need be entered to uniquely identify it. The number of words per keyword is significant and varies according to the specific keyword or keyword group.

In the input syntax descriptions that follow, all keywords will be presented in upper case, while common grammatical constructs and numerical parameters whose values are supplied by the user will be shown in lower case. Optional keywords, constructs, or parameters will be enclosed in [square brackets]. Alternative choices for a keyword may be enclosed {curly braces} and separated by an OR symbol (|), as in {ABC | DEF}, meaning ABC or DEF.

2.1.2 Delimiters

Keywords may or may not require a numeric field or other grammatical construct to follow it. **Adjacent keywords must be separated by a comma (,), colon (:), semicolon (;), equals**
sign (=), or newline; a blank is sufficient ONLY to separate a keyword from a numeric field, not one keyword from another. (These delimiters may not always appear explicitly in the command descriptions that follow.) The user may optionally separate keywords and numeric fields using blanks, commas, colons, semicolons, equal signs, or newlines as seems appropriate. The number of characters on an input line is limited to 160. Placing more characters on a line can lead to platform-dependent results.

2.1.3 Comments

Users may enter comments at any point by using a dollar sign ($) or asterisk (*). All text that follows a dollar sign on a line is ignored. Any line may be continued and lines may be combined. For example:

```
material 1  "W"
model = 11  $ EOS
model = 12  $ ionization
model = 13  $ electrical conductivity
model = 14  $ opacity

density  1.6230  $ kg/m^3
temperature 1.0 [ev]  $ K (1 ev)
end
```
3 Execution Control

Execution control refers to keywords that appear outside the PHYSICS ... END block. As such they are not specific to any particular physics such as TRANSIENT MAGNETICS or THERMAL CONDUCTION. Typically these include the TITLE and UNITS keywords, START TIME and TERMINATION TIME, various EMIT PLOT and EMIT OUTPUT commands, the PLOT VARIABLES ... END block, as well as MATERIAL and material MODEL input. This section provides a supplement to the ALEGRA User’s Manual [4]. Keywords for AZTEC input are located in a separate section.

3.1 Job Initiation and Termination

3.1.1 Units

UNITS, \{CONSISTENT | SI | CGS | CGSEV | GAUSSIAN\}

Default units for ALEGRA are CGS units. However, the UNITS keyword may be used to change the default units to SI, CGSEV, or GAUSSIAN units. Systems of units can be a subject of some confusion. The source of the confusion is that the number of fundamental units and of the dimension of physical quantities is arbitrary [15, 16].

For mechanical quantities (density, velocity, acceleration, force, energy, etc.), all quantities can be expressed in terms of three fundamental units (time, length, and mass). Any simulations involving only these basic mechanical quantities can be run using any CONSISTENT set of units, as well as the other explicit sets of units.

Default temperatures are always Kelvin unless CGSEV units are specified. For high temperature applications where the temperature is above the thousands of Kelvin range, it is common to express the temperature in units of energy by combining Boltzmann’s constant, k_B, with the temperature ($k_B T$ has dimensions of energy and 1 eV is equivalent to 11605.67 K). In the CGSEV units case, eV are the temperature units.

For THERMAL CONDUCTION, quantities such as the specific heat and the thermal conductivity are defined in terms of the fundamental mechanical units (time, length, and mass). Thus THERMAL CONDUCTION problems may be run using any CONSISTENT set of units, as well as the other explicit sets of units.

For TRANSIENT MAGNETICS a variety of electrical units may be associated with input and output quantities. This is accomplished by defining values for six units-dependent
constants, κ_1 to κ_6, at simulation start up. These constants are defined in Table 8 on page 35.

For SI units, only one choice is available because the Ampere is defined to be a fundamental unit and the electrical quantities default to the standard SI units. Only SI is fully implemented at this time for 3D simulations. SI, CGS, and GAUSSIAN are in general supported in 2D TRANSIENT MAGNETICS simulations.

For CGS-related units, many choices are available in principle, however in ALEGRA-MHD only two of these choices have been made available to the user. The default CGS units are also called Practical CGS units. Practical CGS units are a combination of SI and CGS units as found in Knoepfel’s monograph [16]. Densities, lengths and velocities are expressed in CGS-like units of g/cm3, cm and cm/s. Charge, currents and voltages are expressed in SI-like units of coulombs, amperes and volts. Current densities, electric fields and conductivities are expressed in mixed units of amperes/cm2, volts/cm and ohm-cm. Magnetic fields are in gauss. The other CGS-related set of units is the GAUSSIAN system.

The units associated with common variables are outlined in Table 1. Additional systems of units may be found in many textbooks such as Knoepfel’s monograph [16] or the NRL Plasma Formulary [13].

3.2 I/O Control

3.2.1 Plot Variables

```
PLOT VARIABLES
    name [, conversion] [, AS "string"]
    name [, conversion] [, AS "string"]
END
```

This section describes additional PLOT VARIABLES available with this version of ALEGRA. Other basic plot variables for hydrodynamics, solid dynamics, and materials are listed in the ALEGRA User’s Guide [4].

In Tables 2 through 4 the variable types are listed as being scalar, vector, or material. Scalar variables have only one component and may be located at the mesh cell (or element) centers or located at the mesh nodes (or vertices).

Vector variables have two or three components depending on dimensionality and may be located at the mesh cell (or element) centers or located at the mesh nodes (or vertices).
Table 1. Dimensions associated with variables for various systems of units.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SI</th>
<th>CGS</th>
<th>CGSEV</th>
<th>GAUSSIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t), time</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>(\vec{x}), position</td>
<td>m</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>(\vec{v}), velocity</td>
<td>m/s</td>
<td>cm/s</td>
<td>cm/s</td>
<td>cm/s</td>
</tr>
<tr>
<td>(m), mass</td>
<td>kg</td>
<td>g</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>(\rho), mass density</td>
<td>kg/m(^3)</td>
<td>g/cm(^3)</td>
<td>g/cm(^3)</td>
<td>g/cm(^3)</td>
</tr>
<tr>
<td>(\vec{F}), force</td>
<td>N (Newton)</td>
<td>dyne</td>
<td>dyne</td>
<td>dyne</td>
</tr>
<tr>
<td>(E), energy</td>
<td>J (Joule)</td>
<td>erg</td>
<td>erg</td>
<td>erg</td>
</tr>
<tr>
<td>(e), specific internal energy</td>
<td>J/kg</td>
<td>erg/g</td>
<td>erg/g</td>
<td>erg/g</td>
</tr>
<tr>
<td>(T), temperature</td>
<td>K (Kelvin)</td>
<td>K</td>
<td>eV</td>
<td>K</td>
</tr>
<tr>
<td>(C_v), specific heat</td>
<td>J/(kg*K)</td>
<td>erg/(g*K)</td>
<td>erg/(g*eV)</td>
<td>erg/(g*K)</td>
</tr>
<tr>
<td>(q), particle charge</td>
<td>C (Coulomb)</td>
<td>C</td>
<td>C</td>
<td>esu</td>
</tr>
<tr>
<td>(\vec{B}), magnetic induction</td>
<td>T (Tesla)</td>
<td>G (Gauss)</td>
<td>G (Gauss)</td>
<td>G (Gauss)</td>
</tr>
<tr>
<td>(\vec{J}), current density</td>
<td>A/m(^2)</td>
<td>A/cm(^2)</td>
<td>A/cm(^2)</td>
<td>statampere/cm(^2)</td>
</tr>
<tr>
<td>(\vec{E}), electric field</td>
<td>V/m</td>
<td>V/cm</td>
<td>V/cm</td>
<td>statvolt/cm</td>
</tr>
<tr>
<td>(\sigma), electrical conductivity</td>
<td>(Ohm-m)(^{-1})</td>
<td>(Ohm-cm)(^{-1})</td>
<td>(Ohm-cm)(^{-1})</td>
<td>(statohm-cm)(^{-1})</td>
</tr>
<tr>
<td>(k), thermal conductivity</td>
<td>J/(msK)</td>
<td>erg/(cmsK)</td>
<td>erg/(cmseV)</td>
<td>erg/(cmsK)</td>
</tr>
<tr>
<td>(\tau_a), absorption opacity</td>
<td>m(^{-1})</td>
<td>cm(^{-1})</td>
<td>cm(^{-1})</td>
<td>cm(^{-1})</td>
</tr>
<tr>
<td>(\tau_s), scattering opacity</td>
<td>m(^{-1})</td>
<td>cm(^{-1})</td>
<td>cm(^{-1})</td>
<td>cm(^{-1})</td>
</tr>
</tbody>
</table>

In 3D Cartesian, vectors have three components. Each component appears individually in the output files and is labeled with a suffix of \(X \), \(Y \), or \(Z \). In 2D, vectors have only two components. Each component appears individually and is labeled with a suffix of \(X \) or \(Y \) in Cartesian geometry, or with a suffix of \(R \) or \(Z \) in cylindrical geometry. Vector components orthogonal to the mesh are still necessary for 2D simulations. These variables are assigned to their own scalar variable and are listed as such in Table 2.

Material variables are associated with material properties and generally are located at the mesh cell (or element) centers. In general, all MATERIAL variables for each MODEL may be plotted by listing the variable name (with or without underscores) within the PLOT VARIABLES keyword construct. These variables are listed in the material model "Registered Plot Variables" tables for each model (see Table 14, Table 16, Table 20, Table 34, up through Table 36, for example.)
Table 2: Plot Variables for TRANSIENT MAGNETICS.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ or ATHETA</td>
<td>scalar (2D)</td>
<td>A_z or A_θ component of the vector potential orthogonal to the mesh for 2D magnetics calculations</td>
</tr>
<tr>
<td>AJXB</td>
<td>vector</td>
<td>Lorentz force for 3D/2D MHD calculations</td>
</tr>
<tr>
<td>B</td>
<td>vector</td>
<td>Node-based magnetic field for 3D/2D magnetics calculations</td>
</tr>
<tr>
<td>BE</td>
<td>vector</td>
<td>Element-centered magnetic field for 3D/2D magnetics calculations</td>
</tr>
<tr>
<td>BZ or BTHETA</td>
<td>scalar (2D)</td>
<td>Node-based B_z or B_θ component of the magnetic field orthogonal to the mesh for 2D magnetics simulations</td>
</tr>
<tr>
<td>BEZ or BETHETA</td>
<td>scalar (2D)</td>
<td>Element-centered B_z or B_θ component of the magnetic field orthogonal to the mesh for 2D magnetics simulations</td>
</tr>
<tr>
<td>DIVB</td>
<td>scalar (3D)</td>
<td>Divergence of the magnetic field for 3D magnetics calculations. Should always be exactly zero to round-off.</td>
</tr>
<tr>
<td>PHI</td>
<td>scalar (2D)</td>
<td>Node-based product of rA_θ for 2D cylindrical simulations using the FIFE R SCALED formulation</td>
</tr>
<tr>
<td>PSI</td>
<td>scalar (2D)</td>
<td>Node-based product of rB_θ for 2D cylindrical simulations using the FIFE R SCALED formulation</td>
</tr>
<tr>
<td>E</td>
<td>vector</td>
<td>Node-based electric field for 3D/2D magnetics calculations</td>
</tr>
<tr>
<td>EZ or ETHETA</td>
<td>scalar (2D)</td>
<td>Node-based E_z or E_θ component of the electric field orthogonal to the mesh for 2D magnetics calculations</td>
</tr>
<tr>
<td>J</td>
<td>vector</td>
<td>Node-based current density for 3D/2D magnetics calculations</td>
</tr>
<tr>
<td>JE</td>
<td>vector</td>
<td>Element-centered current density for 3D/2D magnetics calculations</td>
</tr>
<tr>
<td>JZ or JTHETA</td>
<td>scalar (2D)</td>
<td>Node-based J_z or J_θ component of the current density orthogonal to the mesh for 2D magnetics calculations</td>
</tr>
<tr>
<td>JEZ or JETHETA</td>
<td>scalar (2D)</td>
<td>Element-centered averaged current density orthogonal to the mesh for 2D magnetics calculations</td>
</tr>
<tr>
<td>VVOL</td>
<td>scalar</td>
<td>Vertex volume for magnetics calculations</td>
</tr>
<tr>
<td>ECON</td>
<td>material</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>

Additional TRANSIENT MAGNETICS plot variables other than those listed in Table 2 are available. They are not listed in the table because they typically are not of use to the user.
These variables are particular to the details of solution formulations and are primarily of use in debugging the solution method.

Table 3. Plot Variables for THERMAL CONDUCTION.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CON</td>
<td>material</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>THERMAL_CON_PAR</td>
<td>material</td>
<td>Thermal conductivity component parallel to B field</td>
</tr>
<tr>
<td>THERMAL_CON_PERP</td>
<td>material</td>
<td>Thermal conductivity component perpendicular to B field</td>
</tr>
</tbody>
</table>

Table 4. Plot Variables for EMISSION.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMITTED POWER</td>
<td>scalar array</td>
<td>Radiation power (energy per time) emitted from each mesh element. Tallied by radiation energy group (gg identifier) and material (mm identifier). Tallies are also summed over energy groups and material, if there is more than one group or material.</td>
</tr>
<tr>
<td>EMITTED_POWER_Mmm_Ggg</td>
<td></td>
<td>total power by group and material summed over materials</td>
</tr>
<tr>
<td>EMITTED_POWER_Ggg</td>
<td></td>
<td>summed over materials</td>
</tr>
<tr>
<td>EMITTED_POWER_Mmm</td>
<td></td>
<td>summed over groups</td>
</tr>
</tbody>
</table>
4 General Physics Input

The physics option keywords specify the physics module(s) to use for a calculation. MHD related options are listed in Table 5. Many options are actually combinations of the physics modules implemented in ALEGRA. The preferred syntax is to use the name of the desired physics module, followed by nested blocks of keywords specific to the parent physics modules, and terminated with a corresponding \texttt{END} keyword. For example:

\begin{verbatim}
magnetohydrodynamics conduction
 \$ mhdcon \ is \ a \ child \ class \ formed \ by \ combining
 \$ \ the \ following \ 3 \ parent \ classes
 hydrodynamics
 no \ displacement, \ x, \ nodeset \ 1
 [other \ hydrodynamics \ keywords]
 ...
 end

transient \ magnetics
 [transient \ magnetics \ keywords]
 ...
 end

thermal \ conduction
 [thermal \ conduction \ keywords]
 ...
 end

[mhdcon \ specific \ keywords]
 ...
 [block \ keywords]
 ...
 [function \ keywords]
 ...
 end

[other \ non-physics \ keywords]
 ...
\end{verbatim}

Keywords pertaining to parent modules of a particular physics module are included
in the problem specification by placing the keywords in an \texttt{END}-block introduced by the name of the parent module. Thus, a \texttt{NO DISPLACEMENT} keyword, which is specific to \texttt{HYDRODYNAMICS} (actually \texttt{DYNAMICS}), appears immediately within the \texttt{HYDRODYNAMICS ... END}-block.

This new syntax offers certain advantages to ALEGRA code development teams. For users of ALEGRA, it offers the advantage of grouping related keywords with the particular physics module to which they are relevant.

4.1 Physics Choices

Physics modules included in ALEGRA-MHD, along with their keywords and parent classes, are listed in Table 5. The parent classes that are listed refer to the specific input sections that are contained in the base ALEGRA User's Manual [4].

<table>
<thead>
<tr>
<th>Physics Option</th>
<th>Parent Classes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRODYNAMICS</td>
<td>ENERGETICS</td>
<td>Deformation with zero stress deviators.</td>
</tr>
<tr>
<td></td>
<td>MECHANICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>SOLID DYNAMICS</td>
<td>ENERGETICS</td>
<td>Deformation with nonzero stress deviators.</td>
</tr>
<tr>
<td></td>
<td>MECHANICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>TRANSIENT MAGNETICS</td>
<td>ENERGETICS</td>
<td>Transient magnetics diffusion in non-moving media.</td>
</tr>
<tr>
<td></td>
<td>MECHANICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>THERMAL CONDUCTION</td>
<td>ENERGETICS</td>
<td>Thermal conduction in non-moving media.</td>
</tr>
<tr>
<td>MAGNETOHYDRODYNAMICS</td>
<td>TRANSIENT MAGNETICS</td>
<td>Transient magnetics diffusion coupled with solid dynamics.</td>
</tr>
<tr>
<td>CONDUCTION</td>
<td>SOLID DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>MAGNETOHYDRODYNAMICS</td>
<td>TRANSIENT MAGNETICS</td>
<td>Transient magnetics diffusion coupled with solid dynamics and thermal conduction.</td>
</tr>
<tr>
<td>CONDUCTION</td>
<td>SOLID DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>HYDRODYNAMICS</td>
<td>THERMAL CONDUCTION</td>
<td>Thermal conduction coupled to hydrodynamics.</td>
</tr>
<tr>
<td>CONDUCTION</td>
<td>HYDRODYNAMICS</td>
<td></td>
</tr>
<tr>
<td>SOLID DYNAMICS</td>
<td>THERMAL CONDUCTION</td>
<td>Thermal conduction coupled to solid dynamics.</td>
</tr>
<tr>
<td>CONDUCTION</td>
<td>SOLID DYNAMICS</td>
<td></td>
</tr>
</tbody>
</table>
In addition to the various physics options, there are options available that modify or enhance the physics options. These modifiers are listed in Table 6.

Table 6. Physics Option Modifiers.

<table>
<thead>
<tr>
<th>Physics Option</th>
<th>Parent Class Modified</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMISSION</td>
<td>ENERGETICS</td>
<td>Uses a radiation emission model. Applicable to all above physics options.</td>
</tr>
</tbody>
</table>
4.2 Block Input

```
BLOCK int
    [subkeyword-list]
END
```

The BLOCK keyword group allows the user to specify the materials that are contained in a block and the type of mesh movement desired in the block. The default is for a block to be a voided Lagrangian block (i.e., if all subkeywords are omitted).

The specification of LAGRANGIAN, MMALE, SMALE, or EULERIAN initially sets the mesh movement for the block to these types. In particular for MMALE and SMALE meshes, additional physics based subkeywords have been defined to weight the node positions when remapping a particular block. MHD specific ALEGRA BLOCK subkeywords are described in Table 7. These subkeywords supplement the BLOCK subkeywords found in the primary ALEGRA User’s Manual [4].

Table 7. BLOCK Remap Sub-Keywords.

<table>
<thead>
<tr>
<th>Sub-Keyword</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B MAG TRIGGER</td>
<td>real</td>
<td>Nodes will be flagged for remesh TRANSIENT MAGNETICS quantities.</td>
</tr>
<tr>
<td>J MAG TRIGGER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B MAG GRADIENT TRIGGER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J MAG GRADIENT TRIGGER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B MAG WEIGHT</td>
<td>real</td>
<td>Weights for remesh controlled by TRANSIENT MAGNETICS quantities.</td>
</tr>
<tr>
<td>J MAG WEIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B MAG GRADIENT WEIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J MAG GRADIENT WEIGHT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Aztec Set

```
AZTEC SET int
```
This keyword may appear as many times as desired, but if more than one type of physics is specified, then this keyword MUST appear within the specific physics input sections. For example, TRANSIENT MAGNETICS and THERMAL CONDUCTION solvers typically use different AZTEC control sets, therefore one must specify different AZTEC SET int keywords in the specific physics input sections.

The default AZTEC SET is 0 which defaults to the conjugate gradient algorithm with symmetric diagonal scaling and other default options. Omission of the AZTEC SET id keyword from a physics input block that requires the use of Aztec will cause that physics to use the default set. The settings for this default set may be changed by including an AZTEC SET 0 ... END block in the input file. See Section 9 for a descriptions of possible options.

Example:

magnetohydrodynamics conduction
 conduction
 ...
 scale, 1.0e10 $ do not use explicit conduction time step
 $ no explicit AZTEC SET keyword
 end
 transient magnetics
 ...
 aztec set, 1
 end
end

aztec 0 $ do NOT use ML for thermal conduction control
 solver, cg
 scaling, sym_diag
 conv norm, rhs
 precond, none
 output, none
 tol, 1.e-8
 max iter, 5000
 end

aztec 1 $ 2D Mag example for AZTEC/ML solver options
 solver, cg
 scaling, sym_diag $ default = sym_diag
conv norm, rhs $ default = r0
tol, 1.e-8
output, none

multilevel $ These settings may be overkill
 fine sweeps = 1
 fine smoother = GAUSS SEIDEL
 coarse smoother = lu
 interp algorithm = AGGREGATION
end

end
5 Magnetohydrodynamics Input

This section provides a list of supplemental keywords relevant to the magnetohydrodynamics section of the ALEGRA User’s Manual [4]. The set of single-fluid hydrodynamics equations solved by ALEGRA-MHD are:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \tag{1}
\]

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla p + \left[\rho_q \kappa_1 \mathbf{E} \right] + \kappa_2 \mathbf{J} \times \mathbf{B} \tag{2}
\]

\[
\rho \left(\frac{\partial e}{\partial t} + (\mathbf{v} \cdot \nabla) e \right) = -p (\nabla \cdot \mathbf{v}) - \nabla \cdot \mathbf{Q} - \left[\kappa_1 \rho_q \mathbf{v} \cdot \mathbf{E} \right] + \kappa_1 \eta \mathbf{J} \cdot \mathbf{J} \tag{3}
\]

where \(\rho \) is the mass density, \(\rho_q \) is the charge density, \(\mathbf{v} \) is the velocity, \(p \) is the scalar pressure (for simplicity we ignore tensor pressures), \(e \) is the specific internal energy, \(\mathbf{B} \) is the magnetic field, \(\mathbf{E} \) is the electric field, \(\mathbf{J} \) is the current density, \(\mathbf{Q} \) is the heat flux, and \(\eta \) is the resistivity.

Equations 1 to 3 utilize two of a set of unit dependent constants, \(\kappa_1 \) and \(\kappa_2 \). The sole purpose of these constants is to allow the equations to be valid for a variety of sets of units. These are described further in Section 6 on page 34. The equations show the coupling to magnetics through the Lorentz force, \(\kappa_2 \mathbf{J} \times \mathbf{B} \), and Joule heating, \(\kappa_1 \eta \mathbf{J} \cdot \mathbf{J} \), and to thermal conduction through the heat flux, \(-\nabla \cdot \mathbf{Q} \). In the MHD limit, it is assumed that the plasma is charge neutral \((\rho_q \approx 0) \), and high-frequency phenomena are ignored \((\partial \mathbf{B} / \partial t \) is neglected), therefore the terms and equations in [square brackets] are ignored.

5.1 Algorithm Control

MAGNETOHYDRODYNAMICS

```
... [hydrodynamics keywords] ...
...
[DENSITY FLOOR real]
[HYDRO FORCE DENSITY FLOOR real]
[LORENTZ FORCE DENSITY FLOOR real]
[MATERIAL FRACTION FORCE LIMIT real]
...
END
```
Due to numerical approximation, some physics options may compute external forces that are inordinately large compared to the material present in a mixed material/void cell, hence the user may want to limit the forces in this case. Limiting only the forces associated with that physics may introduce its own set of problems. The options listed here turn off all forces, both internal and external, and accelerations.

5.1.1 Density Floor

DENSITY FLOOR real (0.0)

When using various density floors to limit hydrodynamic forces, Lorentz forces, etc., it is possible to reduce the material density far below any specified density floor. This can occur because one side of a cell may zero the forces, whereas the other side may not, and material may then be advected out of the cell. Having the density fall too far below a density floor may be detrimental, especially when it is desired to have the limited feature turn back on as densities would rise back above the density floor. This keyword forces ALEGRA to boost cell densities up to the specified DENSITY FLOOR when they fall below this value. If this option is employed, the user should monitor the global mass tallies MASSTOT, NODEMASS, and MASSERR, to ensure that too much mass is not added to the simulation.

5.1.2 Hydrodynamic Force Density Floor

HYDRO FORCE DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of forces on vertices with very little mass. The effective accelerations can become much too large causing mesh elements to become inverted and the calculation to terminate. The HYDRO FORCE DENSITY FLOOR keyword conditionally or gradually turns off the nodal forces.

As an alternative to the MATERIAL FRACTION FORCE LIMIT, the HYDRO FORCE DENSITY FLOOR keyword allows the user to limit the force acting on materials based upon the nodal mass density. The densities of attached elements are averaged. If the average density is less than the specified density floor, the nodal force is limited, otherwise the force is not changed. The multiplier \((hfdf)\) of the nodal force used when the average density \((\rho)\) is less than the specified \(\rho_{floor}\) is given by the following expression where \(p\) is the specified POWER.
Figure 1. Hydrodynamic & Lorentz Force Density Floor Multiplier.

\[hfdf = \begin{cases} 0, & p = 0 \\ \left(\frac{\rho}{\rho_{floor}} \right)^p, & p > 0 \end{cases} \quad (4) \]

For \(p = 0 \) the limiter is a step function, for \(p = 1 \) the limiter is linear, for \(p > 1 \) the limiter drops rapidly near the threshold, and for \(p < 1 \) the limiter drops rapidly near 0. Graphically the multiplier can be displayed as in Figure 1.

Both the HYDRO FORCE DENSITY FLOOR and the MATERIAL FRACTION FORCE LIMIT may be specified simultaneously, but note that the HYDRO FORCE DENSITY FLOOR will supersede the MATERIAL FRACTION FORCE LIMIT. The MATERIAL FRACTION FORCE LIMIT will be ignored. Like MATERIAL FRACTION FORCE LIMIT, this keyword limits all forces, both internal (e.g., pressure) and external (e.g., gravity and Lorentz).

5.1.3 Lorentz Force Density Floor

LORENTZ FORCE DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of Lorentz forces on vertices with very little mass. The effective accelerations can become much too large causing mesh elements to become inverted and the calculation to terminate. The LORENTZ FORCE DENSITY FLOOR keyword conditionally or gradually turns off the Lorentz forces.

As an alternative to the MATERIAL FRACTION FORCE LIMIT, the LORENTZ FORCE DENSITY
FLOOR keyword allows the user to limit the Lorentz force acting on nodes based upon the nodal mass density. The densities of attached elements are averaged. If the average density is less than the specified density floor, the nodal force is limited, otherwise the force is not changed. The multiplier \((lfdf)\) of the nodal force used when the average density \(\rho\) is less than the specified \(\rho_{\text{floor}}\) uses the same expression found for the hydrodynamic force limiter.

Both the LORENTZ FORCE DENSITY FLOOR and the MATERIAL FRACTION FORCE LIMIT may be specified simultaneously, but note that the HYDRO FORCE DENSITY FLOOR will supersede the MATERIAL FRACTION FORCE LIMIT. The MATERIAL FRACTION FORCE LIMIT will be ignored.

5.1.4 Material Fraction Force Limit

\[
\text{MATERIAL FRACTION FORCE LIMIT real (0.0) [POWER real (0.0)]}
\]

Problems can arise in the calculation of forces on vertices with very little mass. The effective accelerations can become much too large causing mesh elements to become inverted and the calculation to terminate. The MATERIAL FRACTION FORCE LIMIT keyword allows the user to limit the force acting on mixed material/void elements. This difficulty arises because the force on the material in a mixed material/void element might not scale proportionately with the amount of material present in the element. In the limit that the material fraction (i.e., \(\text{mat frac} = 1 - \text{void frc}\)) tends to zero, the forces on the nodes surrounding the element may be disproportionately large compared to the mass of the node. In this case the acceleration of the nodes may become large causing the mesh to tangle by inverting elements. This keyword is intended to rectify this situation by limiting the forces on the nodes.

The material fractions of attached elements are averaged. If the average material fraction is less than the specified limit, the nodal force is limited, otherwise the force is not changed. The multiplier of the nodal force used when the average material fraction \(\text{mat frac}\) is less than the specified \(\text{limit}\) is given by the following expression where \(p\) is the specified \(\text{POWER}\).

\[
mf fl = \begin{cases}
0, & p = 0 \\
\left(\frac{\text{mat frac}}{\text{limit}}\right)^p, & p > 0
\end{cases}
\]

For \(p = 0\) the limiter is a step function, for \(p = 1\) the limiter is linear, for \(p > 1\) the
limiter drops rapidly near the threshold, and for $p < 1$ the limiter drops rapidly near 0. Graphically the multiplier can be displayed as in Figure 2.

Note that TRANSIENT MAGNETICS has the same MATERIAL FRACTION FORCE LIMIT keyword. The difference in usage is that in TRANSIENT MAGNETICS this keyword limits the Lorentz force only. In HYDRODYNAMICS this keyword limits all forces, both internal (e.g., pressure) and external (e.g., gravity and Lorentz).
6 Transient Magnetics Input

The TRANSIENT MAGNETICS input controls the magnetics capability in this version of ALEGRA. This allows for modeling electromagnetic effects in the quasi-neutral, quasi-static magnetic field approximation. The set of Maxwell’s equations in the single-fluid limit are:

\[
\nabla \times \vec{E} = -\kappa_3 \frac{\partial \vec{B}}{\partial t} \tag{6}
\]

\[
\nabla \times \vec{H} = \left[\kappa_4 \frac{\partial \vec{D}}{\partial t} \right] + \kappa_5 \vec{J} \tag{7}
\]

\[
\eta \vec{J} = \vec{E} + \kappa_3 \vec{v} \times \vec{B} \tag{8}
\]

\[
\left[\nabla \cdot \vec{D} = \kappa_6 \rho_q \right] \tag{9}
\]

\[
\nabla \cdot \vec{B} = 0 \tag{10}
\]

\[
\left[\vec{D} = \varepsilon \vec{E} \right] \tag{11}
\]

\[
\vec{B} = \mu \vec{H} \quad \text{or} \quad \vec{H} = \nu \vec{B} \tag{12}
\]

where \(\rho_q \) is the charge density, \(\vec{v} \) is the velocity, \(\vec{B} \) is the magnetic field, \(\vec{E} \) is the electric field, \(\vec{J} \) is the current density, \(\eta \) is the resistivity, and \(\varepsilon \) is the permittivity, and \(\mu \) is the permeability.

Equations 6 to 12 utilize a set of unit dependent constants, \(\kappa_1 \) to \(\kappa_6 \). The sole purpose of these constants is to allow the equations to be valid for a variety of sets of units. Units in the context of electromagnetics is a topic of considerable discussion \cite{15, 16}. While six constants are used for convenience, we note that the constants are not all independent. It can be shown that \(\kappa_2 = \kappa_1 \kappa_3 \) by comparing the dimensionality of the Lorentz force with the dimensionality of Faraday’s Law (Eq. 6). From the conservation of charge it follows that \(\kappa_5 = \kappa_4 \kappa_6 \). Finally, from the electromagnetic wave equation in a vacuum one has \(c^2 = (\kappa_3 \kappa_4 \varepsilon \mu)^{-1} \). Table 8 defines the \(\kappa \) factors for five systems of units.
Table 8. Values of Constants for Various Systems of Units

<table>
<thead>
<tr>
<th>Constant</th>
<th>SI</th>
<th>Practical CGS</th>
<th>CGS Gaussian</th>
<th>CGS EMU</th>
<th>CGS ESU</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_1</td>
<td>1</td>
<td>10^7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\kappa_2 = \kappa_1 \kappa_3$</td>
<td>1</td>
<td>10^{-3}</td>
<td>$\frac{1}{c}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>κ_3</td>
<td>1</td>
<td>10^{-8}</td>
<td>$\frac{1}{c}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>κ_4</td>
<td>1</td>
<td>10^{18}</td>
<td>$\frac{1}{c}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\kappa_5 = \kappa_4 \kappa_6$</td>
<td>1</td>
<td>$\frac{4\pi}{c}$</td>
<td>$\frac{4\pi}{c}$</td>
<td>4π</td>
<td>4π</td>
</tr>
<tr>
<td>κ_6</td>
<td>1</td>
<td>$\frac{4\pi c^2}{10^9}$</td>
<td>4π</td>
<td>4π</td>
<td>4π</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>SI</th>
<th>Practical CGS</th>
<th>CGS Gaussian</th>
<th>CGS EMU</th>
<th>CGS ESU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε (permittivity)</td>
<td>$\frac{10^7}{4\pi c^2}$ F/m</td>
<td>1</td>
<td>1</td>
<td>c^{-2}</td>
<td>1</td>
</tr>
<tr>
<td>μ (permeability)</td>
<td>$4\pi 10^{-7}$ H/m</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c^{-2}</td>
</tr>
</tbody>
</table>

In the MHD limit, it is assumed that the plasma is charge neutral ($\rho_q \approx 0$), and high-frequency phenomena are ignored ($\frac{\partial D}{\partial t}$ is neglected), therefore the terms and equations in [square brackets] are ignored. Additional discussion can be found in several references [24, 9, 10].

While most input keywords are similar in 3D and 2D, there are some differences. These are noted in the following keyword descriptions. Various magnetic units are supported. See the `UNITS` keyword in Section 3.1.1 for more information.

3D Example:

transient magnetics
 formulation, whitney $\$ select algorithm
 delta time = 5.e-6 $\$ implicit timestep

$\$ boundary conditions
 e tangent bc, sideset 10, 0., x 1. y 0. z 0.
 cyl axial slot bc, sideset 11, 1.0e6,
 x 0. y 0. z 0.,
 x 0. y 0. z 1.,
 0.00075, 0.001, 0.002, 0.00225
 uniform h bc, sideset 20, 0., x 0. y 0. z 1.
 uniform h bc, sideset 30, 0., x 1. y 0. z 0.
void conductivity, 1. $set void conductivity
current density, projected $method for current density computation
end

2D Example:

transient magnetics
start = 0.
stop = 100.e-9
delta time = 0.15e-9

rz cyl radial slot bc, sideset 1, function 1, scale 1.,
 r 0.0, z 0.0, -2.0, -1.0, 1.0, 2.0
centerline bc, sideset 3, 0.0,

aztec set, 1
end

6.1 Formulation

FORMULATION, WHITNEY (3D)
FORMULATION, {FIFE | FIFE R SCALED} (2D)

This keyword defines the solution formulation. In 3D, it is unnecessary as there is only one option.

In 2D, default value is geometry dependent. In 2D Cartesian geometry, the two methods are equivalent, hence FIFE (Fully Integrated Finite Element) is chosen automatically as the default. The difference is manifested in 2D cylindrical geometry, where FIFE R SCALED is the preferred method and is chosen automatically as the default. FIFE solves for B_θ or A_θ as the fundamental variable (depending on boundary conditions) and FIFE R SCALED solves for $\Psi = rB_\theta$ or $\Phi = rA_\theta$ as the fundamental variable (depending on boundary conditions).
6.2 Time Step Control

6.2.1 Start

START real (−∞) (2D only)

This keyword indicates the simulation time to start the magnetic field solution, if different from the problem START TIME. Field values are set equal to zero prior to this time. It has no effect in 3D.

6.2.2 Stop

STOP real (+∞) (2D only)

This keyword indicates the simulation time to stop the magnetic field solution, if different from the problem TERMINATION TIME. Field values are set equal to zero after this time. It has no effect in 3D.

6.2.3 Delta Time

DELTA TIME real (1.e-6) [FIXED | MAGNETIC DIFFUSION | MAGDIFF] (3D)

DELTA TIME real (1.e-6) [FIXED | MAGNETIC DIFFUSION | MAGDIFF |
AUTOSTEP, TOLERANCE real, BMIN real] (2D)

The minimum of the mechanics time step and this DELTA TIME value is used as the actual magnetohydrodynamics time step. Otherwise this is the time step for the transient magnetics physics. The specified value provides an upper bound on the time step when using the non-fixed options described below. This value may also be used to give a time scale for the differential algebraic equation solver at CIRCUIT SOLVER initialization. The overall magnetics time step is reported in the DT_MAG global variable. This is the net result after considering all options described below.

The optional FIXED parameter causes transient magnetics to choose a fixed time step. This is the default.
The optional MAGNETIC DIFFUSION or MAGDIFF parameter adjusts the time step based upon the magnetic diffusion coefficient, D. Mesh element that are less than 1% material are excluded from consideration.

$$ \Delta t \leq \frac{h^2}{4D} $$

(13)

where $D = 1/(\kappa_2 \kappa_5 \sigma \mu_0)$, σ is the electrical conductivity, μ_0 is the permeability, and h is a characteristic cell size. The individual result of the magnetic diffusion time step is reported in the DT.MAGDIFF global variable.

The optional AUTOSTEP parameter is valid only in 2D and adjusts the time step by estimating a relative truncation error and adjusting the time step to keep the error below the specified TOLERANCE. The BMIN parameter omits mesh cells with a magnetic field value below this value from consideration.

$$ \Delta t_{\text{new}} = \Delta t_{\text{old}} \sqrt{\frac{\text{tolerance}}{\text{relerr}}} $$

(14)

where $\text{relerr} = |\Delta B|$. Both the MAGNETIC DIFFUSION and AUTOSTEP options may be specified simultaneously.

Another factor, the Alfven speed, may control the time step when hydrodynamics is enabled. In this case, the Alfven speed is combined with a material wave speed, e.g., the sound speed, and used in a Courant condition. Keywords affecting the Alfven speed are described below. The individual result of the Alfven speed time step is reported in the DT.ALFVEN global variable.

$$ \Delta t \leq \frac{h}{\sqrt{V_{\text{hydro}}^2 + V_{\text{Alfven}}^2}} $$

(15)

where $V_{\text{Alfven}} = \frac{B}{\sqrt{\rho \mu_0}}$ in SI units.

Example 1:

transient magnetics
... delta time 0.5e-6, magnetic diffusion ...
end
Example 2:

transient magnetics

...delta time 1., autostep, tol 0.01, bmin 1.e-4, magdiff...

end

6.2.4 Alfven Density Floor

ALFVEN DENSITY FLOOR real (0.0)

If this keyword is present then the Alfven speed is artificially set to zero in any element with a density below ALFVEN DENSITY FLOOR. This avoids the problem of very small time steps due to anomalously large Alfven speeds in low-density regions.

Example:

transient magnetics

...alfven density floor 0.01 $ gm/cm^3...

end

6.2.5 Alfven Velocity Maximum

ALFVEN VELOCITY MAXIMUM real (0.)

If this keyword is present then the Alfven speed is artificially set to zero in any element with a Alfven wave speed greater than ALFVEN VELOCITY MAXIMUM. This avoids the problem of very small time steps due to anomalously large Alfven speeds.

Example:

transient magnetics

...alfven velocity max 1.0e7 $ m/s...

...
6.3 Algorithm Control

6.3.1 A Rezone

A REZONE, {CT VAN LEER (default) | CT DONOR | CT HARMONIC |
CT MONOTONIC | MONOA (2D only)} (2D,3D)

The CT options indicate the constrained transport reconstruction option for the magnetic flux in 3D or the vector potential in 2D Cartesian. The CT options take an optional ISO and EH arguments for use by developers. CT VAN LEER is the default in 2D, but MONOA is still available as an example of a not so good algorithm. This keyword can also be used in 3D, but MONOA is not permitted.

6.3.2 Alpha

ALPHA real (0.) (2D only)

Variable weight of lumped versus consistent mass matrix. A value of 1.0 implies use of a fully consistent mass matrix and the default value of zero implies use of a lumped mass matrix. This is only active in 2D. In 3D a fully consistent vector edge element mass matrix is used.

The effect of this option can be seen in certain magnetic diffusion simulations. Use of the consistent mass matrix can result in small negative magnetic field values where none are expected. Use of the lumped avoids this behavior, thus it is the default.

6.3.3 Aztec Set

AZTEC SET int (0)

This defines the id-number of the Aztec parameter set which the magnetic solver will use.
For 2D MAG or MHD, the equations solved are formulated to always produce symmetric positive definite matrices, hence the recommended settings for Aztec parameters are:

```
AZTEC int
SOLVER, CG
SCALING, SYM_DIAG $ (or SYM_ROW_SUM)
PRECOND, SYM_GS $ (used if no MULTILEVEL)
CONV NORM, RHS $ (or ANORM or NOSCALED)
OUTPUT, NONE
TOL, 1.E-12 $ (< 1.E-8)
MAX ITER, 1000 $ (>500)
MULTILEVEL
  FINE SWEEPS = 5
  FINE SMOOTHER = GAUSS SEIDEL
  COARSE SWEEPS = 1 $ (because it is LU)
  COARSE SMOOTHER = LU
  MULTIGRID LEVELS = 10
  INTERP ALGORITHM = AGGREGATION
END
END
```

These settings for the solver, scaling and preconditioner are appropriate for symmetric positive definite matrices. A convergence norm setting of R_0 is not recommended because 2D TRANSIENT MAGNETICS uses the old solution as the initial guess and this norm can easily remain greater than the tolerance, especially if the solution approaches steady state. Tighter tolerances typically produce a more accurate answer and should be the first parameter changed if the answer is not approaching the expected solution, especially for high resolution meshes. Note however that tight tolerances may cause Aztec to report convergence warnings. These appear because Aztec converges for the scaled matrices, but not necessarily for the unscaled matrices or for the convergence norm. To eliminate these messages the user can try setting the SCALING and the PRECONDITIONER to NONE to force convergence of the unscaled matrices. Finally, the iterative solver typically should not require an exceptional number of iterations. One case where high iteration counts may be necessary is if the applied boundary conditions cause a strong step function change to the solution during the initial time step.
6.3.4 Conserve Memory

CONSERVE MEMORY

If this keyword is found then the magnetic solver code releases back to the system temporary memory utilized in setting up and solving the linear equations. Otherwise, this memory is only allocated once.

6.3.5 Magnetic Field

MAGNETIC FIELD, \{PROJECTED | CONSISTENT\}

Variations on implementations of deriving the magnetic field from the vector potential by solving the equation $\vec{B} = \nabla \times \vec{A}$. The default is PROJECTED in 3D and CONSISTENT in 2D. The CONSISTENT option is available in 2D only.

PROJECTED solves the curl equation by treating the LHS as a lumped diagonal matrix and evaluating the RHS by a single point integration using the value of the curl at the cell center.

CONSISTENT employs a finite element approach to calculate the nodal magnetic field directly from the nodal vector potential while skipping the element-centered magnetic field as an intermediary. The LHS is treated as a lumped diagonal matrix and the RHS is evaluated by Gaussian integration of the curl using finite element basis functions.

6.3.6 Magnetic Force

MAGNETIC FORCE, \{TENSOR | PJXBV | PJXPBPV | NOBFORCE\}

Variations on implementations of the magnetic force. Default is PJXPBPV in 3D and TENSOR in 2D. Both the PJXPBPV and PJXBV options first compute the magnetic field and current density at the mesh vertices and then form the cross product to determine the magnetic force. The TENSOR option computes the magnetic stress tensor at the element centers and then computes a surface integral around each mesh vertex to determine the magnetic force. NOBFORCE turns off the magnetic force term in MHD simulations. Primarily for developers.
6.3.7 Current Density

CURRENT DENSITY, \{PROJECTED | CONSISTENT\}

Various implementations of deriving the current density from either the magnetic field by solving $\vec{J} = \nabla \times \frac{1}{\mu} \vec{B}$ or from the vector potential by solving $\vec{J} = \nabla \times \frac{1}{\mu} \nabla \times \vec{A}$. The default is CONSISTENT in 2D. Only PROJECTED is available in 3D.

PROJECTED solves $\vec{J} = \nabla \times \frac{1}{\mu} \vec{B}$ by treating the LHS as a lumped diagonal matrix and evaluating the RHS by a single point integration using the value of the curl at the cell center.

CONSISTENT solves $\vec{J} = \nabla \times \frac{1}{\mu} \nabla \times \vec{A}$ by treating the LHS as a lumped diagonal matrix and evaluating the RHS by Gaussian integration using finite element basis functions. The RHS also integrates the double curl once to incorporate the boundary conditions.

6.3.8 Joule Heat

JOULE HEATING, \{STANDARD | MAXSIGMA | NOHEAT\}

Default is STANDARD. Joule heating is based on a fully-integrated, finite-element-based rate consistent with the discrete magnetic diffusion equations. In multi-material mesh cells, the Joule heat is partitioned among materials according to the conductivity fraction. For a simple steady state problem this gives the correct Joule heating in mixed cells.

MAXSIGMA limits Joule heating in the multi-material and mixed-void-material elements by effectively limiting the electric field by the ratio of the average conductivity to the maximum conductivity in the element. This prevents overheating of materials in mostly void cells and may allow calculations to run longer than using the STANDARD option.

\[
\dot{Q}_{\text{Joule}} = \sigma_{\text{ave}} |E|^2 \approx \sigma_{\text{ave}} \left(\frac{\sigma_{\text{ave}}}{\sigma_{\text{max}}} \right)^2
\]

(16)

NOHEAT turns off the Joule heating term.

Another feature that is built into ALEGRA is the ability to selectively turn off Joule heating for specific materials. Occasionally simulations are run with non-conducting materials, i.e., insulators. The electrical conductivity model should return a small, but finite, conductivity so that very little current flows in the insulator. Even though the conductivity and current density are small, the Joule heating, $\dot{Q}_{\text{Joule}} / \sigma$, may be non-negligible. Joule heating
in these materials may be disabled if the conductivity of the material is below the VOID CONDUCTIVITY. This feature also disables Joule heating of materials with no conductivity model.

6.3.9 Joule Heat Density Floor

JOULE HEAT DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the calculation of the Joule heating in elements with very little mass. The effective heating can become much too large causing the material temperatures to become too high and the calculation to terminate. JOULE HEAT DENSITY FLOOR conditionally or gradually turns off the Joule heating term.

If the element mass density is less than the specified density floor, the Joule heating is limited, otherwise the Joule heating not changed. The multiplier (jhd f) of the Joule heating used when the average density (p) is less than the specified ρ floor is given by the following expression where p is the specified POWER.

\[
jhd f = \begin{cases}
0, & p = 0 \\
\left(\frac{\rho}{\rho_{floor}}\right)^p, & p > 0
\end{cases}
\] (17)

For p = 0 the limiter is a step function, for p = 1 the limiter is linear, for p > 1 the limiter drops rapidly near the threshold, and for p < 1 the limiter drops rapidly near 0. Graphically the multiplier can be displayed as in Figure 3.
6.3.10 Electrical Conductivity Density Floor

ELECTRICAL CONDUCTIVITY DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the diffusion of the magnetic field and hence the calculation of Lorentz forces in regions of the mesh with very little mass. ELECTRICAL CONDUCTIVITY DENSITY FLOOR conditionally or gradually reduced down to the VOID CONDUCTIVITY. This feature allows these regions to behave akin to void.

If the element mass density is less than the specified density floor, the electrical conductivity is limited, otherwise the electrical conductivity is not changed. The multiplier ($ecd f$) of the electrical conductivity used when the average density (ρ) is less than the specified ρ_{floor} is given by the following expression where p is the specified POWER. In all cases, the electrical conductivity will be greater than or equal to the VOID CONDUCTIVITY.

$$ecdf = \begin{cases} 0, & p = 0 \\ \left(\frac{\rho}{\rho_{floor}}\right)^p, & p > 0 \end{cases} \quad (18)$$

For $p = 0$ the limiter is a step function, for $p = 1$ the limiter is linear, for $p > 1$ the limiter drops rapidly near the threshold, and for $p < 1$ the limiter drops rapidly near 0. Graphically the multiplier can be displayed as in Figure 4.
6.3.11 Void Conductivity

VOID CONDUCTIVITY real (default 1.e-6)

This keyword defines the isotropic void conductivity as well as the default for materials if a conductivity model is missing. It is not a required input. The default is set to 1.e-6 (\(\Omega\)-m)\(^{-1}\), except for the 2D vector potential formulation, in which case the default is zero.

Under certain circumstances, the value of the void conductivity can be used to disable Joule heating in select materials (see Section 6.3.8 on page 43). This feature also disables Joule heating of materials with no conductivity model.

6.3.12 Void Reluctivity

VOID RELUCTIVITY real (default 7.957747e+5)

This keyword defines the isotropic void reluctivity, i.e. the inverse of the permeability, as the default for materials if a reluctivity models is not defined. It is not a required input. The default is set to \(1/(4\pi \times 10^{-7} \text{ H/m})\).

6.4 Boundary Conditions

Magnetic field distributions (and subsequently current density) are generated using proper magnetic field initial conditions as well magnetic diffusion from boundary conditions. If not set properly, non-physical results may occur. Users are highly encouraged to first create a sketch of their experiment and identify the computational domain and relevant boundary conditions before setting up the grid. Default boundary conditions for the 2D RZ code are zero current density tangent to the boundary (current inflow or outflow). Default boundary conditions for the 2D XY and 3D code are zero tangent magnetic field.

6.4.1 Uniform H BC

UNIFORM H BC, sideset, function-set, vector, [LENGTH real]

Apply \(\vec{H} = \vec{B}/\mu_0\) boundary conditions to the given sideset assuming the vector is tangential to the sideset. If it is not then the tangential component will be imposed. The function-set specifies the magnitude of the magnetic field H when no LENGTH keyword

46
is present. If a LENGTH is given then the function-set is assumed to be a current rather than a magnetic field and LENGTH is used to change current to magnetic field units according to:

\[B(t) = \mu_0 H(t) = \frac{\mu_0 I(t)}{L} \]

(19)

In 2D, a vector is specified as:

\([X \text{ real, } Y \text{ real, }] [Z \text{ real}] \quad \text{(Cartesian geometry)}\]

\([R \text{ real, } Z \text{ real, }] [\text{THETA real}] \quad \text{(cylindrical geometry)}\]

depending upon geometry. The first two components or third component may be optional.

It is often useful to specify \(\text{SCALE} = 7.957747e5 \) in the function-set, especially when working in SI units when the magnetic induction \(B \) is specified. This \(\text{SCALE} \) is \(1/\mu_0 \) and scales \(H = B/\mu_0 \).

3D Examples:

uniform h bc, sideset 10, 1.0, scale 7.957747e5, x 0. y 0. z -1.
uniform h bc, sideset 11, 1.0, scale 7.957747e5, x 0. y 0. z 1.

2D Example (1 Tesla magnetic field in the boundary plane of a Cartesian mesh):

uniform h bc, sideset 10, 1.0, scale 7.957747e5, x 0. y -1.

2D Example (1 Tesla magnetic field orthogonal to the boundary plane of a Cartesian mesh):

uniform h bc, sideset 20, 1.0, scale 7.957747e5, z 1.

6.4.2 E Tangent BC

E TANGENT BC, sideset, function-set, vector

Apply tangential electric field boundary conditions to set the tangential components of the electric field.
vector is the electric field direction which the code normalizes to unit magnitude and function-set gives the magnitude.

3D Example:

e tangent bc, sideset 100, 0.0, x 1. y 0. z 0.

2D Example:

e tangent bc, sideset 2, 200.0, r 0. z 1.

Typically, E tangent boundary conditions of zero are used to specify that current density is traveling orthogonal (into or out of) the specified boundary.

6.4.3 Cylindrical Axial Slot BC

CYLINDRICAL AXIAL SLOT BC, sideset, {function-set | CIRCUIT},
vector1, vector2, r0, r1, r2, r3 (3D)

{XY|RZ} CYLINDRICAL AXIAL SLOT BC, sideset, {function-set | CIRCUIT},
(vector1,) r0, r1, r2, r3 (2D)

This boundary condition can be utilized to approximate current inflow and outflow through a boundary in a manner similar to current flow into a device via an anode-cathode (AK) gap or COAX cable feeds. The user must apply the axial slot boundary condition to a sideset which must be a planar sideset cutting a cylindrical region. The prefix XY or RZ is needed in 2D to distinguish between Cartesian and cylindrical geometries.

The user begins by sketching the computational domain and identifying key boundary locations (see Figure 5). A coordinate system must first be established, thereby defining a cylindrical axis and radial points from it (the cylinder does not necessarily have to be aligned with the coordinate axes of the mesh).

The vector1 defines a point on the axis of the cylinder and may displace the cylinder from the origin and also defines the $r = 0$ location. In 2D, it is used only in Cartesian geometry and is omitted in cylindrical geometry. The vector2 is used only in 3D and defines the direction of the cylindrical axis. Given a point \vec{P} on the sideset, $z = (\vec{P} - \vec{V}_1)$.

48
\vec{V}_2 and $r = |\vec{P} - \vec{V}_1 - (z \cdot \vec{V}_2)|$, assuming vector2 is normalized to unity (ALEGRA will do this).

The real parameters r_0, r_1, r_2, and r_3 specify the radial range over which this boundary condition applies. The total current is assumed to flow uniformly into the mesh between r_0 and r_1 and out of the mesh between r_2 and r_3 so that there is no net accumulation of electrical charge. In other words, the axial current density is assumed constant between r_0 and r_1, constant and of the opposite sign between r_2 and r_3, and zero elsewhere on the sideset.

The function-set keyword may be used to drive the simulation with a prescribed current source. The direction (polarity) of the current flow can be reversed by changing the sign of the function-set (i.e., setting SCALE = -1.0). The CIRCUIT keyword may be used instead of a function-set to couple the simulation to an external circuit.

Relative to the axis of the cylinder the magnetic field in the sideset is specified by

$$H_0 = f(r) \frac{I(t)}{2\pi r}$$ \hspace{1cm} (20)
Figure 6. Current density streamlines from 3D cylindrical axial slot application. A large anode-cathode (AK) gap has been placed in the top plate where the boundary condition was applied. Using the cylindrical axial slot BC, the current can now flow down the side of the can, along the bottom, back up the inner (blue) wall and back out the domain as if the slot was connected to a much larger experimental apparatus which did not need to be incorporated into the simulation.

In many instances the user may wish to allow the current to diffuse naturally into the inner and outer conductors. This may be accomplished by letting the slot (or gap) between \(r_1 \) and \(r_2 \) be its own sidset. \(r_0 \) and \(r_1 \) may be equal to each other and less than the inner radius of the gap. \(r_2 \) and \(r_3 \) may be equal to each other and greater than the outer radius of the gap. Because the extent of the sidset is limited to the gap, the boundary condition will be applied only in the gap. ALEGRA will then naturally diffuse the magnetic field and

where

\[
f(r) = \begin{cases}
0, & r \leq r_0 \\
\frac{r^2-r_0^2}{r_1^2-r_0^2}, & r_0 \leq r \leq r_1 \\
1, & r_1 \leq r \leq r_2 \\
\frac{r_2^2-r_1^2}{r_3^2-r_2^2}, & r_2 \leq r \leq r_3 \\
0, & r_3 \leq r.
\end{cases} \tag{21}
\]
Figure 7. Current density streamlines from a periodic 3D cylindrical axial slot application in a wedge domain similar to that in Figure 6. In this example, the core of the domain has been removed.

Current into the inner and outer conductors.

3D Example (this example specifies a constant 1 MA current flow through the mesh):

cyl axial slot bc, sideset 11, 1.e6,
 x 0. y 0. z 0.,
 x 0. y 0. z 1.,
 0.00075, 0.001, 0.002, 0.00225

2D Cylindrical Example:

rz cyl axial slot bc, sideset 1, function 2, scale 0.8,
 0.0, 0.0, 1.0, 2.0

Note that "scale" in this example is actually part of the "function-set" keyword.

2D Cartesian Example:

xy cyl axial slot bc, sideset 300, circuit,
 x 0.0 y 0.0, 1.0, 1.0, 2.0, 2.0
Figure 8. Current density streamlines from 3D cylindrical axial slot application. Individual axial slot boundary conditions are applied to each post, similar to COAX cable feeds. The top mesh plate has been removed in order to see the interior of the computational domain. The scale option can be used to appropriately scale the current at each post to a prescribed total current function.

6.4.4 Cylindrical Radial Slot BC

CYLINDRICAL RADIAL SLOT BC, sideset, \{function-set | CIRCUIT\},
vector1, vector2, z0, z1, z2, z3 \hspace{1cm} (3D)\hspace{1cm}

{XY|RZ} CYLINDRICAL RADIAL SLOT BC, sideset, \{function-set | CIRCUIT\},
vector1, [z0, z1, z2, z3] \hspace{1cm} (2D)\hspace{1cm}

Apply a current boundary condition to the given sideset which must be of cylindrical shape. The prefix XY or RZ is needed in 2D to distinguish between Cartesian and cylindrical geometries.

The function-set keyword may be used to drive the simulation with a known current source. The direction of the current flow can be reversed by changing the sign of the
function-set (i.e., setting SCALE = -1.0). The CIRCUIT keyword may be used instead of a function-set to couple the simulation to a set of circuit equations.

The vector1 defines a point on the axis of the cylinder and may displace the cylinder from the origin and also defines the $z = 0$ location. In 2D cylindrical geometry, it only defines the $z = 0$ location. The vector2 is used only in 3D and defines the direction of the cylindrical axis. Given a point \vec{P} on the sideset, $z = (\vec{P} - \vec{V}_1) \cdot \vec{V}_2$ and $r = |\vec{P} - \vec{V}_1 - (z \cdot \vec{V}_2)|$, assuming vector2 is normalized to unity (ALEGRA will do this).

The real parameters z_0, z_1, z_2, and z_3 specify the axial range over which this boundary condition applies. The total current is assumed to flow uniformly into the mesh between z_0 and z_1 and out of the mesh between z_2 and z_3 so that there is no net accumulation of electrical charge. In other words, the radial current density is assumed constant between z_0 and z_1, constant and of the opposite sign between z_2 and z_3, and zero elsewhere on the sideset.

Relative to the axis of the cylinder the magnetic field in the sideset is specified by

\[
H_\theta = f(z) \frac{I(t)}{2\pi r},
\]

(22)
where

\[
 f(z) = \begin{cases}
 0, & z \leq z_0 \\
 \frac{z-z_0}{z_1-z_0}, & z_0 \leq z \leq z_1 \\
 1, & z_1 \leq z \leq z_2 \\
 \frac{z-z_2}{z_3-z_2}, & z_2 \leq z \leq z_3 \\
 0, & z_3 \leq z.
\end{cases}
\] (23)

In many instances the user may wish to allow the current to diffuse naturally into the lower and upper conductors. This may be accomplished by letting the slot (or gap) between \(z_1\) and \(z_2\) be its own sideset. \(z_0\) and \(z_1\) may be equal to each other and less than the lower height of the gap. \(z_2\) and \(z_3\) may be equal and greater than the upper height of the gap. Because the extent of the sideset is limited to the gap, the boundary condition will be applied only in the gap. ALEGRA will then naturally diffuse the magnetic field and current into the lower and upper conductors.

In situations where the upper and lower conductors are not explicitly modeled, \(z_0\) and \(z_1\) may be below the mesh and \(z_2\) and \(z_3\) may be above the mesh to model a current that effectively flows into the bottom and out of the top of the mesh.

3D Example:

\texttt{cyl radial slot bc, sideset 30, function 1,}
\texttt{x 0.0 y 0.0 z 0.0,}
\texttt{x 0.0 y 0.0 z 1.0,}
\texttt{-10.0, -1.0, 1.0, 10.0}

2D Cylindrical Example:

\texttt{rz cyl radial slot bc, sideset 1, function 2, scale 0.8,}
\texttt{r 0.0 z 0.0,}
\texttt{-2.0, -1.0, 1.0, 2.0}

Note that "scale" in this example is actually part of the "function-set" keyword.

2D Cartesian Example:

\texttt{xy cyl radial slot bc, sideset 300, circuit,}
\texttt{r 0.0 z 0.0}
6.4.5 E Normal Return Current BC

\begin{verbatim}
E NORMAL RETURN CURRENT BC, real,
 CATHODE BLOCK id-list, ANODE BLOCK id-list,
 \{function-set | CIRCUIT\} \hspace{1cm} \text{(2D XY only)}
\end{verbatim}

\begin{verbatim}
E NORMAL RETURN CURRENT BC, real,
 CATHODE MATERIAL id-list, ANODE MATERIAL id-list,
 \{function-set | CIRCUIT\} \hspace{1cm} \text{(2D XY only)}
\end{verbatim}

This boundary condition allows the modeling of a cross-section of a cathode-anode configuration where the normal current in the cathode is balanced by the return current in the anode. Specification of the cathode and anode may be accomplished using either block-ids or material-ids. Block and material specifications may not be mixed in a single simulation, however.

The first real is the length of the return current in the Z direction orthogonal to the plane of the mesh. IMPORTANT: The region keyword `VOLUMETRIC SCALE FACTOR` must also be set to the product of this length and any planar geometrical symmetries. This is because the code divides the volumetric scale factor by this normal length in order to
compute the planar symmetry for scaling the current.

If the block specification is used, the cathode and anode id-lists need to include all blocks which may contain cathode or anode material during the course of the calculation. It is desirable to have void (blocks not specified in the cathode or anode lists and having no material) separating the two regions. The code will give warning messages if any material enters these void regions. The code cannot otherwise determine if the anode and cathode regions physically touch, causing an electrical short and thus invalidating the modeling assumptions.

If the material specification is used, the cathode and anode id-lists must be distinct. If the cathode and anode materials are the same, two MATERIAL keyword groups must still be defined, but may reference the same set of MODEL subkeywords. The number of mesh blocks is immaterial. No separating void blocks are needed. Cathode and anode materials may coexist in the same mesh block. Other materials may be present in addition to the anode and cathode materials. These materials may represent insulators or perhaps electrically isolated conductors. The code will abort should cathode and anode materials coexist in the same mesh cell. This situation indicates an electrical short and again invalidates the modeling assumptions.

The function-set is representative of a voltage drop driver. Alternatively the mesh may be coupled to an external CIRCUIT model.

Finally, this boundary condition is incompatible with H-tangent boundary conditions such as the CYLINDRICAL AXIAL SLOT BC, CYLINDRICAL RADIAL SLOT BC, or UNIFORM H BC.

Example 1:

```plaintext
e normal return current bc, 1.0,
   cathode block 5, anode block 1 2 3 4, function 1
```

Example 2:

```plaintext
e normal return current bc, 0.036,
   cathode material 11 12, anode material 13, circuit
```

The equations which describe this boundary conditions and the coupling to an external circuit equation have been documented [18].
6.4.6 Centerline BC

CENTERLINE BC, {sideset | NONE}
(2D RZ only)

Zero the magnetic field or the vector potential along the given sideset. In 2D cylindrical geometry, the value of the magnetic field \(B_\theta \), the vector potential \(A_\theta \), and their products with the radius \(r \) are identically zero along the centerline of the mesh. Multiple occurrences of this command are allowed when the centerline is comprised of more than one sideset.

This is the only boundary condition for magnetic field simulations that can be known \textit{a priori} and was historically provided for the user. The method devised to implement the boundary condition, however, is rather inefficient for large meshes, requiring a loop over the entire mesh every time step. The historic method is still used in cylindrically symmetric problems when no CENTERLINE BCs are specified. Use of this boundary condition suppresses the historic method.

This boundary condition is valid along the inner edge of cylindrical meshes that do not extend to the centerline, but still have the field equal to zero because there is no enclosed current. It is also valid along the outer edge of cylindrical meshes where there is zero net current (i.e., there may be oppositely directed currents that cancel one another).

The keyword \texttt{NONE} specifies that there is no such applicable boundary condition. Such may be the case if there is an interior current-carrying conductor that is not explicitly modeled. The intent of the \texttt{NONE} keyword is to suppress the historic method in cases where there is no zero-field inner boundary.

2D RZ Examples:

centerline bc, sideset 11
centerline bc, sideset 12

6.5 Magnetic Flux Density Initial Conditions

Generally speaking magnetic flux density initial conditions must be used with care and consideration. In most real problems the interior magnetic field should be generated as a consequence of boundary conditions. However, sometimes it is convenient to input initial conditions and then view the evolution of the field from that point on. The \texttt{DIFFUSE INITIAL FIELD} option can also be used to smooth the initial conditions if desired before...
the actual start of the simulation. The general format for initial magnetic flux density initial conditions is

\[\text{INITIAL B FIELD, [block-id,] \{option\}} \]

This specifies the application of an initial condition by block-id. The block-id determines the mesh block to which the initial condition applies. If omitted, the initial condition will apply to all mesh blocks. block-ids are required to be positive.

The option keyword allows the user to choose from the following initial conditions. If no initial conditions are specified, then the initial magnetic field is set equal to zero.

If multiple initial conditions are specified, then the fields are added according to the superposition principle.

6.5.1 Diffuse Initial Field

DIFFUSE INITIAL FIELD, [real]

This option invokes a transient magnetics solve before startup whereby the relevant magnetic field distribution may be computed for a given span of time based on the boundary conditions implemented. This option is particularly useful in establishing a potentially non-trivial magnetic field distribution before the simulation start time.

The real number represents the time interval for the magnetic field diffusion. The size of the time interval relative to the magnetic diffusion time, \(\tau_d = l^2 / 4D \), where \(D = 1/(\kappa_2\kappa_3\sigma\mu_0) \), determines the amount of diffusion that takes place. Currently this option performs only one magnetic solve. The user should be aware that setting the time interval too high may result in lack of convergence of the iterative solver.

6.5.2 Uniform Initial Field

\[\text{INITIAL B FIELD, [block-id,] UNIFORM, vector1, [symtensor], [CONSTANT vector2]} \] (3D)

\[\text{INITIAL B FIELD, [block-id,] UNIFORM, vector1, [CONSTANT real]} \] (2D)
Uniform magnetic flux density value. block-id specifies the input block to which the field applies. If block-id is missing the field applies to all blocks.

The value, \vec{B}, vector1, specifies the magnitude and direction of the initial magnetic field. Units for the magnitude are Tesla in SI units, or Gauss in practical CGS units, or Gauss in GAUSSIAN units.

In 3D the symtensor, \vec{S}, contributes an extra term to the vector potential to give certain continuity properties to the vector potential at block boundaries. It does not affect the magnetic field density except at block boundaries. The vector2, \vec{C}, is a constant vector offset to the vector potential available to match the vector potential across block boundaries.

$$\vec{A} = \vec{C} + 0.5(\vec{S} \times \vec{B} + \vec{B} \times \vec{x}) \quad (24)$$

In 2D, a vector is specified as

- [X real, Y real,] [Z real] (Cartesian geometry)
- [R real, Z real,] [THETA real] (cylindrical geometry)

depending upon geometry. The first two components or third component may be optional. The CONSTANT is an offset to the vector potential component to match the vector potential across block boundaries.

6.5.3 Uniform Planar Current

INITIAL B FIELD, UNIFORM PLANAR CURRENT, vector1, vector2, vector3

(Cartesian only)

This keyword defines a planar magnetic flux density generated by a planar sheath of uniform current density. The magnetic field is zero on one side of the sheath (called the negative side), is uniform on the other side of the sheath (called the positive side), and varies linearly within the sheath. This initial condition applies to all mesh blocks and is not meaningful in 2D cylindrical geometry.

vector1 specifies a point on the negative face of the sheath. vector2 orients the sheath normal. Its magnitude equals the thickness of the sheath. Its direction points toward the positive side of the sheath where the magnetic field is non-zero. vector3 defines the direction and magnitude of the magnetic field.
Figure 11. Geometry for the Uniform Planar Current initial condition.

In 2D, vector1 and vector2 have only (X, Y) components, while vector3 may have all three components and is specified as:

\[[X \text{ real}, \ Y \text{ real,}] \ [Z \text{ real}] \]

The analytic formulas for this initial condition are as follows. Given a point \(\vec{p} \) in the mesh, the coordinate relative to the negative face of the sheath is \(x = (\vec{p} - \vec{V}_1) \cdot \vec{V}_2 / |\vec{V}_2| \). The magnetic field and vector potential are:

\[
\vec{B}(x) = B_0 \frac{\vec{V}_3}{|\vec{V}_3|} \begin{cases}
0, & x \leq 0 \\
\frac{x}{|\vec{V}_2|}, & 0 \leq x \leq |\vec{V}_2| \\
1, & |\vec{V}_2| \leq x
\end{cases} \tag{25}
\]

\[
\vec{A}(x) = B_0 \frac{\vec{V}_2 \times \vec{V}_3}{|\vec{V}_2 \times \vec{V}_3|} \begin{cases}
0, & x \leq 0 \\
-x^2 / (2|\vec{V}_2|), & 0 \leq x \leq |\vec{V}_2| \\
-\frac{1}{2}|\vec{V}_2| - (x - |\vec{V}_2|), & |\vec{V}_2| \leq x
\end{cases} \tag{26}
\]

where \(B_0 = |\vec{V}_3| \) has been called out for clarity.
For example in 2D Cartesian geometry, a 0.5 mm sheath perpendicular to the x axis and centered at 2.0 cm and with a 200 T magnetic field on its positive side is specified using SI units as:

\[
\begin{align*}
\text{initial b field, uniform planar current,} \\
x & 0.01975 \ y 0., \ $ \text{sheath face} \\
x & 0.0005 \ y 0., \ $ \text{sheath normal/thickness} \\
z & 200. \ $ \text{magnetic field}
\end{align*}
\]

6.5.4 Uniform Axial Current

\[
\begin{align*}
\text{INITIAL B FIELD, [block-id,] AXIAL CURRENT,} \\
[R0 \text{ real}] \ [R1 \text{ real}] \ [B0 \text{ real}] \ [B1 \text{ real}] \ [\text{CONSTANT vector,}] \\
\text{vector1, vector2, } z0, z1, z2, z3 \quad \text{(3D)}
\end{align*}
\]

\[
\begin{align*}
\text{INITIAL B FIELD, [block-id,] AXIAL CURRENT,} \\
[R0 \text{ real}] \ [R1 \text{ real}] \ [B0 \text{ real}] \ [B1 \text{ real}] \ [\text{CONSTANT real,}] \\
\text{vector1, } [z0, z1, z2, z3] \quad \text{(2D)}
\end{align*}
\]

This keyword defines an azimuthal magnetic flux density generated by a uniform axial current. All optional parameters default to zero if they are not specified.

\text{block-id} \text{ specifies the input block to which the field applies. If } \text{block-id} \text{ is missing the field applies to all blocks.}

\text{R0 and } \text{R1} \text{ specify the inner and outer radii of the annular region where the axial current flows. The current density is assumed to be uniform for } R_0 \leq r \leq R_1 \text{ and zero elsewhere. } \text{B0 and } \text{B1} \text{ specify the magnitude of the azimuthal magnetic field at the radii } R_0 \text{ and } R_1, \text{ respectively.}

\text{The optional } \text{CONSTANT} \text{ keyword is added to the vector potential to allow continuity of the vector potential across block boundaries.}

\text{vector1} \text{ defines a point on the axis of the cylinder which displaces the annular region from the origin and defines the } z = 0 \text{ point along the axis. } \text{vector2} \text{ defines the direction of the axis of the region in 3D (ALEGRA will normalize } \text{vector2}). \text{ These parameters are similar to the CYLINDRICAL RADIAL SLOT BC boundary condition (see Figure 12).}

\text{The real numbers } z0, z1, z2, \text{ and } z3 \text{ define the axial extent of the initial field. The magnetic field is modified by a factor } f(z) \text{ that increases linearly from zero to one between}
Figure 12. Geometry for the Axial Current initial condition.

z_0 and z_1, is unity between z_1 and z_2, and decreases linearly back to zero between z_2 and z_3. It is zero outside this range. This models a positive uniform current density entering the mesh through a cylindrical slot between z_0 and z_1 and exiting the mesh through a cylindrical slot between z_2 and z_3. z_0 and z_1 can be below the mesh and z_2 and z_3 above the mesh to model a current that flows into the bottom and out of the top of the mesh.

In 2D, vector 1 is a point on the axis of the cylindrical region. In Cartesian geometry it can be used to displace the center of the region from the origin. In cylindrical geometry, it defines the $z = 0$ point along the axis. No second vector is needed because the direction of the cylindrical axis can only be parallel to the z axis. The real numbers $z_0, z_1, z_2,$ and z_3 are only needed in 2D for cylindrical geometry and have the same meaning as in 3D.

The analytic formulas for this initial condition are as follows. Given a point \vec{P} in the mesh, the location along the axis is $z = (\vec{P} - \vec{V}_1) \cdot \vec{V}_2$ and the radial distance from the cylindrical axis is $r = |\vec{P} - \vec{V}_1 - (z \cdot \vec{V}_2)|$. The azimuthal magnetic field and vector potential

\[
f(z) = \begin{cases}
0, & z \leq z_0 \\
\frac{z - z_0}{z_1 - z_0}, & z_0 \leq z \leq z_1 \\
1, & z_1 \leq z \leq z_2 \\
\frac{z_1 - z}{z_2 - z_2}, & z_2 \leq z \leq z_3 \\
0, & z_3 \leq z .
\end{cases}
\] (27)
where \vec{A}_0 is the optional CONSTANT and \vec{n} is the unit vector in the direction of vector2. \vec{A}_0 is added to the vector potential to allow continuity of the vector potential across block boundaries. Quite often, $R_0 = 0$ and/or $B_0 = 0$ and the above expressions simplify tremendously. In 2D, \vec{A}_0 and \vec{n} have only a z component.

For example, if block 3 is an annular region located between two perfect cylindrical conductors at radii 0.002 meters and 0.02 meters and 1000 Amperes of current flows on the inner conductor and -1000 Amperes flows on the outer conductor, the magnetic field in block 3 is described in 3D by:

$\vec{A}_0 + \vec{n}$

Initial b field, block 3, axial current, r1 0.02, b1 0.1,
constant, x 0., y 0., z -5.605e-4,
x 0., y 0., z 0., x 0., y 0., z 1., -2., -1., 1., 2.

Initial b field, block 3, axial current, r1 0.002, b1 0.1,
x 0., y 0., z 0., x 0., y 0., z 1., -2., -1., 1., 2.

or in 2D cylindrical by:

B_{θ} (not A_{θ}) is the fundamental variable
$ blocks 1 and 2 (inner and outer conductors) default to zero
$ block 3 (annular region)

 initial b field, block 3, axial current, b 0.1, r 0.002,
 r 0., z 0., -2., -1., 1., 2.

6.5.5 Mean Initial Field

INITIAL B FIELD, MEAN, vector

This keyword is intended to be used for vector potential solutions on periodic meshes. One cannot represent a constant magnetic field with a periodic vector potential. In 2D, this means that the magnetic field must be in the plane of the mesh, orthogonal components are not allowed. The vector is a magnetic field vector that is constant in both space and time. There is no block-id subkeyword with this command. To be constant in space, this command must apply to all blocks. This keyword is typically used in conjunction with other initial fields and/or boundary conditions to represent the total magnetic field.

In 3D, the vector is specified as:

X real, Y real, Z real \hspace{2cm} (Cartesian geometry)

In 2D, the vector is specified as either:

X real, Y real \hspace{2cm} (Cartesian geometry)
R real, Z real \hspace{2cm} (cylindrical geometry)

Orthogonal components to the mesh are not allowed. Only a non-zero Z component makes physical sense in cylindrical geometry.

Example:

 initial b field, block 1, uniform, x 0.0 y 0.001120998243 $ left
 initial b field, block 2, uniform, x 0.0 y -0.001120998243 $ right
 initial b field, mean, x 0.0008407486825 y 0.0
6.5.6 User Defined

INITIAL B FIELD, [block-id] USER DEFINED, (A or B)

This option provides the user with substantial flexibility in establishing a magnetic field based upon an analytic function using basic functions. The user may specify the vector potential field \(\mathbf{A} \) in 3D or the scalar potential \(A_z \) for 2D xy simulations. The magnetic flux density is given by the curl of \(\mathbf{A} \). For 2D xy or rz simulations the field value is the scalar magnetic flux density \(B_z \) or \(B_\theta \). This option is the preferred method of initializing magnetic field configurations that are not covered by other options. The C code which is implemented must abide by the special rules given in the file README.txt in the alegra/tools/rtcompiler directory of the ALEGRA distribution. Three examples are provided:

INITIAL B FIELD, [block-id,] USER DEFINED, A,
$ quoted C code with:
$ coord[0..1] as the input point in the field and
$ field[0] as the output vector potential scalar field.
$ For example, specify a 2D xy vector potential field
"field[0] = -3.*coord[0]*cos(coord[1]);"
[END]

INITIAL B FIELD, [block-id,] USER DEFINED, B,
$ quoted C code with:
$ coord[0..1] as the input point in the field and
$ field[0] as the output magnetic flux density field.
$ For example, specifies the magnetic flux density field in 2D rz.
"field[0] = -3.*coord[0]*cos(coord[1]);"
[END]

INITIAL B FIELD, [block-id,] USER DEFINED, A,
$ quoted C code with:
Figure 13. Magnetic field streamlines from 3D user defined magnetic field example.

\[\text{coord}[0..2] \text{ as the input point in the field and} \]
\[\text{field}[0..2] \text{ as the output vector potential field.} \]
\[\text{For example, specify a 3D xyz vector potential field for a coil of radius } L_1 \]
\[\text{with magnitude } B_1. \]

```
double pi = acos(-1.0);
double radius = sqrt( coord[0]*coord[0] + coord[1]*coord[1] +
                     coord[2]*coord[2] );
double theta = atan2( sqrt( coord[0]*coord[0] +
                            coord[1]*coord[1] ), coord[2] );
double phi = atan2( coord[1], coord[0] );
double aphi = (B1*L1*L1)*radius*sin(theta) / 
               ( (L1*L1)+radius*radius+(2.0*L1)*radius*sin(theta))*
               sqrt(((L1*L1)+radius*radius+(2.0*L1)*radius*sin(theta)));

field[0] = -aphi*sin(phi)/2.0;
field[1] = aphi*cos(phi)/2.0;
field[2] = 0.0;
```

[END]
6.6 Coupled Circuit Equations

If required, the user can setup an external circuit (represented as a set of differential-algebraic equations) to be coupled to the transient magnetic or MHD simulations. This is useful in situations where the simulation is driven by a known voltage source (most magnetic boundary conditions require knowledge of the current) or where the dynamics of the system being modeled feeds back into the electrical response of the external circuit. The circuit solver may be used in both 2D and 3D, and in either SI or CGS (Practical CGS) units. An explanation of the global output variables associated with the circuit solver is given in Table 41 on page 130.

The circuit equations are solved using DASPK [19, 7, 22]. DASPK is describe further in Section 6.6.1 below.

Coupled circuit equations are fairly simple to set up and the method is outlined using the following steps.

1. Sketch a diagram of the equivalent circuit (see Figure 14).

2. Label the junctions between the circuit components with numbers. Each junction becomes a CIRCUIT NODE in the input deck. The numerical labels become the node numbers in the input deck. Circuit nodes can connect more than two circuit elements, that is, parallel circuits are allowed.

3. Each circuit component becomes a CIRCUIT ELEMENT in the input deck. Most circuit elements connect two nodes and these are designated as the input and output nodes. A few circuit elements connect three nodes. Positive currents flow from the input node to the output node. If the order of the nodes happen to be mislabeled, no matter, ALEGRA will report a negative current flowing in the element.

4. ALEGRA will automatically construct a set of equations consistent with Kirchhoff’s laws for the equivalent circuit, namely that the sum of the voltages around a loop is zero, \(\sum V = 0 \), and that the sum of the currents into a node is zero, \(\sum I = 0 \).

For example, the Z accelerator in the Pulsed Power Center at Sandia National Laboratories can be modeled using an equivalent circuit. The simplest such model has only a time-dependent voltage source, an external resistance and an external inductance. The Z pinch load is modeled using the magnetohydrodynamics features of ALEGRA. As the Z pinch plasma (load) collapses and stagnates onto its axis, the inductance of the load rises dramatically causing a current drop in the external circuit. Voltage monitors along the accelerator reliably measure the voltage at a significant distance from the load. The actual
current through the load is not known to the same accuracy. Both of these aspects can be modeled using a coupled circuit equation.

Example:

$ external circuit loop
 circuit solver, relerr 1.e-4, abserr 1.e-4

 circuit node, 1, fixedv 0. $ ground
 circuit node, 2
 circuit node, 3
 circuit node, 4, function 1 $ source voltage

$ circuit element, 1 4 $ represented by source voltage
 circuit element, 4 3, resistor 0.120 $ ohms
 circuit element, 3 2, inductor 12.05e-9 $ henrys
 circuit element, 2 1, mesh

 rz cyl radial slot bc, sideset 300, circuit,
 r 0. z 0., -10., -1., 1., 10.

6.6.1 Circuit Solver

CIRCUIT SOLVER, [RELERR real (0.01)] [ABSERR real (0.01)]
Circuit solver error criteria passed to DASPK. The error values typically used range from $1.E-4$ to $1.E-6$. The DASPK solution procedure is somewhat sensitive. The DASPK solver is an adaptive differencing type of code which uses divided difference to estimate accuracy. It is the contention of the authors that the user cannot push the tolerances too low or else one will end up with roundoff problems. If the user gives some reasonable happy medium tolerance the package will be reasonably robust. It is recommended that the user adjust these error parameters to gain a feel for solution response and carefully monitor the actual solutions obtained.

6.6.2 Circuit Node

CIRCUIT NODE node_

[sideset]

[STARTV real | FIXEDV real | function-set |
 DAMPED SINUSOID amplitude damping_rate frequency phase | DOUBLE EXPONENTIAL A_amplitude a_exponent B_amplitude b_exponent]

This input defines a circuit node and associated voltage. A node may be attached to one or more CIRCUIT ELEMENTs. According to Kirchhoff’s law the sum of the currents flowing from each circuit element into the node must sum to zero. If a node connects to only one circuit element then that node must have its voltage specified.

The sideset, if specified, is constant potential surface in the ALEGRA mesh. The voltage at this surface is defined by one of the following voltage options. The potential is linked to the ALEGRA simulation through an E TANGENT BC boundary condition.

The remaining set of optional keywords allow a choice of the voltage behavior of the node. Note that the user is not required to specify a voltage option. In that case, the voltage is allow to vary and the values are computed by the circuit model.

STARTV sets the initial voltage of the node. Subsequent voltage values are computed by the circuit model. This option is useful for specifying an initial voltage across a capacitor element.

FIXEDV fixes the voltage of the node at a constant value. At least one node must have a constant zero voltage. This node provides the ground for the circuit model.

function-set or FUNCTIONV specifies a tabular voltage input for the node. The table_

69
refers to a standard ALEGRA FUNCTION and the optional SCALE parameter is a voltage multiplier.

DAMPED SINUSOID requires four real values and specifies a time dependent voltage of the form

\[V(t) = A \cdot e^{-at} \cdot \sin(\omega \cdot t + \theta), \tag{30} \]

where \(A \) is the voltage amplitude, \(a \) is the damping rate, \(\omega \) is the frequency (radians/second) and \(\theta \) is the phase (radians).

DOUBLE EXPONENTIAL requires four real values and specifies a time dependent voltage of the form

\[V(t) = A \cdot e^{-at} - B \cdot e^{-bt}, \tag{31} \]

6.6.3 Circuit Element

CIRCUIT ELEMENT input_node output_node

\{ MESH |
 CAPACITOR real capacitance |
 INDUCTOR real inductance |
 RESISTOR real resistance |
 SOURCE, function-set |
 SWITCH, function-set |
 VARISTOR real vref real iref real alpha |
 ZFLOW, \{function-set\} real gmin real gmax \}

This line defines each circuit element and its characteristics. Many circuit element input values are order dependent and have no keywords.

The input_node and the output_node are integer numbers correspond to nodes defined by the CIRCUIT NODE keyword. A positive current flows through the circuit element from the input_node to the output_node.

One of the remaining keywords is required to specify the type of circuit element. Valid options are specified in the following list.
MESH specifies that this circuit element represents the mesh. This circuit element couples to a TRANSIENT MAGNETICS boundary condition that specifies the CIRCUIT keyword such as the CYLINDRICAL RADIAL SLOT BC.

CAPACITOR specifies a standard electrical capacitor with a capacitance value of real capacitance.

INDUCTOR specifies a standard electrical inductor with a inductance value of real inductance.

RESISTOR specifies a standard electrical resistor with a resistance value of real resistance.

SOURCE specifies a prescribed current source defined by the function-set.

SWITCH specifies a resistor with a time dependent resistance value given by a function-set.

ZFLOW specifies a Zflow resistor with a Zflow value given by the function-set. Minimum and maximum conductance values are also required. The first node in the element node list specifies the Zflow loss node. The model requires that the Zflow loss node have a circuit element connectivity of 3. The conductance for the Zflow element is given by

$$\frac{I_{\text{upstream}} - I_{\text{downstream}}}{Z_{\text{flow}}\sqrt{I_{\text{upstream}}^2 - I_{\text{downstream}}^2}}$$

(32)

Example:

circuit solver, relerr=1.e-4, abserr 1.e-4

$ mesh loop
$ capacitor-mesh $ mesh has inductance and resistance

circuit node 1 fixedv 0.
circuit node 2 startv 1. $ initial capacitor voltage

circuit element, 1 2, capacitor 5.e-6 $ Farads

circuit element, 2 1, mesh

xy cyl radial slot bc, sideset 300, circuit,
 r 0. z 0.

$ test loop - independent of mesh
$ capacitor-inductor-resistor

71
circuit node 3 fixedv 0.
circuit node 4 startv 1. $ initial capacitor voltage
circuit node 5

circuit element, 3 4, capacitor 5.e-6 $ Farads
circuit element, 4 5, inductor 18.64e-9 $ Henrys
circuit element, 5 3, resistor 5.09e-2 $ Ohms

This example is from a problem that computes the behavior of a section of coaxial cable (the mesh) driven by the voltage stored in a capacitor. This is represented by nodes 1 and 2 and the associated circuit elements. For comparison a simple test RLC circuit is also modeled by node 3, 4, and 5, and the associated elements. Note that this test circuit is completely independent of the mesh demonstrating the flexibility of the circuit model.

6.7 Current Tally

CURRENT TALLY, int,
 sideset1 [SYMMETRY FACTOR real] [sideset2 ...]
END (3D/2D)

CURRENT TALLY, int,
 block-id1 [SYMMETRY FACTOR real] [block-id2 ...]
END (2D only)

This option allows the user to tally the total current flowing through a collection of sidesets or blocks as a function of time. Multiple sidesets may be included in a single tally. The \texttt{int} is used to identify the tally in the \textsc{EXODUS} and \textsc{HISPLT} output files. In 2D, the user may specify a set of blocks to tally the total current flow perpendicular to the mesh. sidesets and block-ids may not be mixed in the same tally, although both may appear in separate \texttt{CURRENT TALLY} commands in the same input deck. Both the incoming and outgoing currents are reported for each tally. The names of the tallies in the output files are \texttt{I_IN_int} and \texttt{I_OUT_int}.

The optional \texttt{SYMMETRY FACTOR} keyword allows the user to individually scale the current tally of each sideset or block in situations where a symmetry is present and a reduced simulation is modeled. This keyword is necessary because sidesets (which are areas) may not scale in the same manner as volumes (e.g., the \texttt{VOLUMETRIC SCALE FACTOR} keyword).
Coding internal to ALEGRA attempts to force the user to specify a completed set of tallies. The code checks to see that the incoming and outgoing currents are equal, or else that one is zero in the case of a partial tally. If the two values differ by more than some tolerance (currently 1.E-5), a warning message is issued.

Assuming the specified tallies represent the total current, ALEGRA also reports the total current in the variable CURRENT, the total mesh inductance in the variable INDUCTANCE, and the total mesh resistance in the variable RESISTANCE.

Examples:

```
current tally, 1, sideset 3, sideset 4, end
current tally, 2, block 12, end
```
7 Thermal Conduction Input

THERMAL CONDUCTION

... [thermal conduction keywords] ...

END

The THERMAL CONDUCTION keyword group specifies controls for the implicit thermal solver routines.

\[\rho C_v \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) \] (33)

where \(T \) is the temperature, \(\rho \) is the density, \(C_v \) is the specific heat, and \(k \) is the thermal conductivity.

7.1 Time Step Control

The thermal conductivity time step is given by

\[\Delta t_{con} = f \min(\Delta t_k, \Delta t_c) \] (34)

where

\[\Delta t_k = \frac{\rho C_v h^2}{k} \] (35)

where \(h \) is a characteristic cell size and

\[\Delta t_c = \Delta t(.05)|T + T_{min}|/|T - T_{old}| \] (36)

7.1.1 Time Step Scale, \(f \)

TIME STEP SCALE real (default 10.)

The keyword TIME STEP SCALE can be set to control the scale, \(f \), applied to the time step. The time step is calculated using an explicit criteria, but can be increased by any
desired factor f since the actual calculation is implicit, by use of the TIME STEP SCALE keyword. The default value is 10.

The thermal conduction time step is reported in the DT_CON global variable. Note that this time step is reported in the output file without the TIME STEP SCALE factor.

7.1.2 Minimum Temperature, T_{min}

MINIMUM TEMPERATURE real (default 1000 K) T_{min} is the cutoff temperature for temperature change control.

7.1.3 Minimum Density, ρ_{min}

MINIMUM DENSITY real (default 0.) ρ_{min} is the cutoff thermal conductivity density. This keyword is needed when the thermal solves are taking too many iterations due to a stiffness rather than mass dominated matrix corresponding to extremely high thermal diffusion speeds. This can happen for very small densities occurring in the problem. No multigrid is available for the face centered discretization employed so to make progress this keyword can be employed to essentially turn off diffusion in very low density regimes. This is accomplished internally in the code by setting the thermal conductivity k to very small values.

7.2 Algorithm Control

7.2.1 Aztec Set

AZTEC SET int

This keyword sets the identification number of the Aztec parameter set which the implicit thermal solver will use. The actual parameters used are specified by the AZTEC keyword group. The default value is 0.

7.2.2 Conserve Memory

CONSERVE MEMORY

75
Requests that all solver memory for conduction be returned to the system and reallocated the next cycle. By default the memory is retained across cycles. WARNING: It is possible that excessive allocations and deallocations can have a detrimental effect on code performance.

7.2.3 Thermal Conductivity Density Floor

THERMAL CONDUCTIVITY DENSITY FLOOR real (0.0) [POWER real (0.0)]

Problems can arise in the diffusion of the material temperature in regions of the mesh with very little mass. THERMAL CONDUCTIVITY DENSITY FLOOR conditionally or gradually reduces the thermal conductivity down to zero. This feature allows low density regions to behave akin to void.

If the element mass density is less than the specified density floor, the thermal conductivity is limited, otherwise the thermal conductivity is not changed. The multiplier (ecdf) of the thermal conductivity used when the average density (ρ) is less than the specified ρ_{floor} is given by the following expression where p is the specified POWER.

$$
tcdf = \begin{cases}
0, & p = 0 \\
\left(\frac{\rho}{\rho_{floor}}\right)^p, & p > 0
\end{cases}
$$

(37)

For $p = 0$ the limiter is a step function, for $p = 1$ the limiter is linear, for $p > 1$ the limiter drops rapidly near the threshold, and for $p < 1$ the limiter drops rapidly near 0. Graphically the multiplier can be displayed as in Figure 15.

7.3 Boundary Conditions

7.3.1 No Heat Flux

NO HEAT FLUX, sideset

This keyword allows the user to specify zero heat flux through a surface defined by the sideset argument.
7.3.2 Prescribed Heat Flux

PRESCRIBED HEAT FLUX, sideset, function-set

This keyword allows the user to prescribe the heat flux on a surface defined by the sideset keyword as a function of time.

7.3.3 Temperature BC

TEMPERATURE BC, sideset, function-set

This keyword allows the user to specify the temperature on a surface defined by the sideset keyword as a function of time.
8 Emission Input

EMISSION
 {BLACKBODY | PLANCK | BREMSSTRAHLUNG}
GROUP BOUNDS
 ...
END
 [EMISSION ENERGY FLOOR, 0.0]
 [MAXIMUM EMISSION DENSITY, 0.0]
 [MINIMUM TEMPERATURE, 0.0]
 [NEWTON | BISECT]
 [MAXIMUM NEWTON ITERATIONS, 1]
 [TOLERANCE, 1.0e-6]
END

The emission model is a way to keep material heating under control by radiating photon energy using an approximate radiation emission model. The net radiation emission is typically a balance between energy emitted and energy absorbed,

$$\frac{de_m}{dt} = - \sum_g [R(T_m, g) - A(g)] \cdot f_\rho \cdot f_T$$

(38)

for each group g and each material m. Here $\frac{de_m}{dt}$ is the time rate of change of the material specific energy, T_m is the material temperature, g is the group number, $R(T_m, g)$ is a radiation emission rate function, and $A(g)$ is a radiation absorption rate function. f_ρ and f_T are density and temperature dependent multipliers described below. Simple one-dimensional considerations allow us to approximate the probability of escape after a distance x as $e^{-\tau_{ag}d}$ where $\tau_{ag}d$ is known as the optical depth, τ_{ag} is the absorption opacity, and the distance d is the mean distance to void. We approximate the absorption rate as the emission rate times the probability of reabsorption (i.e., not escaping).

$$A(g) = \left(1 - e^{-\tau_{ag}d}\right) R(T_m, g)$$

(39)

Thus, the net emission rate becomes the total emission rate reduced by the probability of escape.
\[
d\frac{de_m}{dt} = -\sum_g e^{-\tau_{ag}d} R(T_m, g) \cdot f_P \cdot f_T
\]

(40)

Because ALEGRA is an energy-based code, the actual discrete algorithm approximates the material temperature variation in terms of the specific energy.

\[
T_m^{n+1} = T_m^n + \frac{(e_m^{n+1} - e_m^n)}{C_v}
\]

(41)

where \(C_v\) is the material heat capacity. The first Newton iterate is used to calculate the change in \(e_m\). The derivative of \(R(T_m, g)\) with respect to temperature is then required. The Newton correction is intended to provide a mechanism for avoiding excessive cooling.

8.1 Emission Model Options

There are currently two emission options within ALEGRA:

- **BLACKBODY** or **PLANCK** - Blackbody emission model using the Planck function
- **BREMSSTRAHLUNG** - thermal Bremsstrahlung emission model

One or the other emission model must be specified.

8.1.1 Planck Emission

\{BLACKBODY | PLANCK\}

These two keywords both refer to the same emission model. The **BLACKBODY** or **PLANCK** emission model defines the radiation emission rate function in units of \(\text{energy/mass/time}\) as

\[
R(T_m, g) = \sigma_{ag} B(T_m, g) = \frac{\tau_{ag}}{\rho} B(T_m, g)
\]

(42)

where \(\sigma_{ag}\) is the group absorption cross section in units of \(\text{area/mass}\), \(\tau_{ag} = \rho \sigma_{ag}\) is the group absorption opacity in units of \(1/\text{length}\) (\(\tau_{ag}\) is the variable that ALEGRA stores), \(\rho\) is...
the mass density, and $B(T_m, g)$ is the Planck function integral in units of energy/area/time given by

$$B(T_m, g) = 4\pi \int_{\varepsilon_g}^{\varepsilon_{g+1}} B(\varepsilon, T_m) d\varepsilon = 4\pi \int_{\varepsilon_g}^{\varepsilon_{g+1}} \frac{2}{h^3c^2} \exp \left(\frac{\varepsilon}{kT_m} \right) - 1 d\varepsilon$$ \hspace{1cm} (43)

This emission model requires that all materials have an opacity model specified. Scattering opacity values are ignored. See "Opacity Models" in Section 10.6.

8.1.2 Bremsstrahlung Emission

Bremsstrahlung

The Bremsstrahlung emission model is pertinent to astrophysical X-ray cluster cooling flows and is defined by the White and Sarazin prescription for a half-solar abundance cooling function [14]. The radiation emission rate function is given by

$$R(T_m, g) = \begin{cases}
2.35 \cdot e^{-\left(\frac{T_m}{3.5 \cdot 10^5} \right)^{4.5}} + \frac{5. \cdot e^{-\left(\frac{T_m}{2.8 \cdot 10^5} \right)^{4.4}}}{T_m^{0.17}} & , \ T_m > 10^5 \\
0.05 \cdot e^{-\left(\frac{T_m}{1.55 \cdot 10^7} \right)^4} \frac{1}{T_m^{0.08}} + 2.4 \cdot 10^{-5} \sqrt{T_m} & \\
3.18 \left(\frac{T_m}{10^7} \right)^{1.6} - \frac{150}{T_m} & , \ \text{otherwise}
\end{cases}$$ \hspace{1cm} (44)

It is recommended that the BISECT option be enabled for this emission model since the cooling function is not monotonic with temperature.

Bremsstrahlung does not require any opacity models and should only be called with a single energy group. The limits of this group are irrelevant. Use of the probability of escape does require an opacity model however, unless the OPTICAL MULTIPLIER is set to zero.
8.2 Group Boundaries

GROUP BOUNDS
 LOG real TO real BY int, [SCALE real (1.0)]
 LINEAR real TO real BY int, [SCALE real (1.0)]
 ...
END

This required keyword defines the photon energy group bounds in Kelvin, unless other-otherwise specified. The photon energy spectrum is divided into regions. The package further subdivides regions into the actual photon groups using either LINEAR or logarithmic (LOG) intervals within the region. The optional SCALE keyword is used as an opacity multiplier. Its default value is 1.0

For example, a specification of

group bounds
 log 1. [ev] to 32. [ev] by 5
end

will cause the spectral region from 1.0 to 32.0 eV to be divided into five photon groups whose bounds are 1.0 to 2.0, 2.0 to 4.0, 4.0 to 8.0, 8.0 to 16.0, and 16.0 to 32.0 eV.

The GROUP BOUNDS input is required for both models.

8.3 Algorithm Control

8.3.1 Emission Multiplier

EMISSION MULTIPLIER real (1.0)

If this optional keyword is present then the net emission rate is scaled by this factor. The main purpose of this factor is to allow the user to perform sensitivity studies relative to the natural emission rate.
8.3.2 Optical Multiplier

OPTICAL MULTIPLIER real (1.0)

If this optional keyword is present then the optical depth τ_{ax} in the probability of escape is scaled by this factor. This factor may be used for sensitivity studies or to adjust the estimate of the mean-distance-to-void x should there be a systematic error.

8.3.3 Mean Distance to Void

MDTV, \{RMS (default) | MIN MAX\}

This optional keyword selects the method used to estimate of the mean-distance-to-void d. The default method is RMS.

The RMS method computes the root-mean-square size of the material and the mesh about the mean material and mesh locations for each orthogonal coordinate, respectively. The RMS mesh sizes are used as weights for the RMS material sizes in the standard distance formula to account for one-dimensional simulations.

$$d = 2\sqrt{w_{x_{rms}}^2 + w_{y_{rms}}^2 + w_{z_{rms}}^2}$$

$$w_x = \frac{X_{rms}}{\sqrt{X_{rms}^2 + Y_{rms}^2 + Z_{rms}^2}}$$

$$w_y = \frac{Y_{rms}}{\sqrt{X_{rms}^2 + Y_{rms}^2 + Z_{rms}^2}}$$

$$w_z = \frac{Z_{rms}}{\sqrt{X_{rms}^2 + Y_{rms}^2 + Z_{rms}^2}}$$

where x_{rms}, y_{rms}, and z_{rms} are the root-mean-square size of the material, and X_{rms}, Y_{rms}, and Z_{rms} are the root-mean-square size of the mesh.

The MIN MAX method uses the difference between the maximum and minimum material coordinates and the difference between the maximum and minimum mesh coordinates as the size of the material and mesh respectively. The min-max mesh sizes are used as weights for the min-max material sizes in the standard distance formula to account for one-dimensional simulations.
\[d = \sqrt{w_x^2(x_{\text{max}} - x_{\text{min}})^2 + w_y^2(y_{\text{max}} - y_{\text{min}})^2 + w_z^2(z_{\text{max}} - z_{\text{min}})^2} \] \hspace{1cm} (46)

\[w_x = \frac{(X_{\text{max}} - X_{\text{min}})}{\sqrt{(X_{\text{max}} - X_{\text{min}})^2 + (Y_{\text{max}} - Y_{\text{min}})^2 + (Z_{\text{max}} - Z_{\text{min}})^2}} \]

\[w_y = \frac{(Y_{\text{max}} - Y_{\text{min}})}{\sqrt{(X_{\text{max}} - X_{\text{min}})^2 + (Y_{\text{max}} - Y_{\text{min}})^2 + (Z_{\text{max}} - Z_{\text{min}})^2}} \]

\[w_z = \frac{(Z_{\text{max}} - Z_{\text{min}})}{\sqrt{(X_{\text{max}} - X_{\text{min}})^2 + (Y_{\text{max}} - Y_{\text{min}})^2 + (Z_{\text{max}} - Z_{\text{min}})^2}} \]

where \(x_{\text{min}}, y_{\text{min}}, z_{\text{min}}, x_{\text{max}}, y_{\text{max}}, \) and \(z_{\text{max}} \) are the minimum and maximum values where material is present, and \(X_{\text{min}}, Y_{\text{min}}, Z_{\text{min}}, X_{\text{max}}, Y_{\text{max}}, \) and \(Z_{\text{max}} \) are the minimum and maximum values of the mesh.

For uniform meshes the RMS method yields a smaller mean-distance-to-void than the MIN MAX method. The MIN MAX method is better for highly non-uniform meshes.

8.3.4 Emission Energy Floor

EMISSION ENERGY FLOOR real (0.0)

If this optional keyword is present then the available energy in an element will not drop below the percentage given by the EMISSION ENERGY FLOOR. This floor may help to avoid the problem of an element obtaining a negative temperature by emitting more energy than is available. The available energy is defined by a linear extrapolation of the material specific internal energy down to zero temperature.

\[e_{\text{avail}} = e_m(T_m) - e_m(0) = C_v(T_m - 0) = C_vT_m \] \hspace{1cm} (47)

For example, to keep the energy available in an element from dropping below 1% of its starting value, one would use the EMISSION ENERGY FLOOR as follows:

```
emission
...
  emission energy floor 0.01
end
```

Emission down to this energy floor is allowed.
8.3.5 Maximum Emission Density

MAXIMUM EMISSION DENSITY real (0.0) [POWER real (0.0)]

If this optional keyword is present and the density value is non-zero, then only material densities less than the input value will emit at the prescribed rate. A zero value implies emission at all densities. The assumption is that above this density the material is optically thick and some portion of the emitted energy is immediately reabsorbed. The multiplier of the net emission rate when the density is greater than the specified limit is given by the following expression where p is the specified POWER.

$$f_\rho = \begin{cases}
1, & \rho \leq \rho_{\text{max}} \\
0, & \rho > \rho_{\text{max}}, p = 0 \\
\left(\frac{\rho_{\text{max}}}{\rho}\right)^p, & \rho > \rho_{\text{max}}, p > 0
\end{cases}$$

(Graphically the multiplier can be displayed as in Figure 16. This option should only be used when the probability of escape factor is insufficient to limit the net emission rate at high densities.

Example:

```plaintext
emission
...
max emission density 0.1
end
```
8.3.6 Minimum Emission Temperature

MINIMUM TEMPERATURE real (0.0) [POWER real (0.0)]

The optional MINIMUM TEMPERATURE specification is such that if emission model would cool an element below this temperature, the emission model turns itself off. Emission down to this minimum temperature is allowed. If the temperature value is non-zero, then only material temperatures greater than the input value will emit at the prescribed rate. A zero value implies emission at all temperatures. The assumption is that the material is too cold to emit. The multiplier of the net emission rate when the temperature is less than the specified limit is given by the following expression where \(p \) is the specified POWER.

\[
 f_T = \begin{cases}
 1, & T \geq T_{\text{floor}} \\
 0, & T < T_{\text{floor}}, p = 0 \\
 \left(\frac{T}{T_{\text{floor}}} \right)^p, & T < T_{\text{floor}}, p > 0
\end{cases}
\] \((49) \)

Graphically the multiplier can be displayed as in Figure 17. This option should only be used when the probability of escape factor is insufficient to limit the net emission rate at low temperatures.

Example:

```
emission
...```

Figure 17. Minimum Emission Temperature Multiplier.
min temperature 933. $ Kelvin
end

8.3.7 Maximum Energy Change

MAXIMUM ENERGY CHANGE real (0.90)

This optional keyword allows the user to limit the maximum change in the material specific internal energy due to emission. This is accomplished by limiting the simulation time step so that the amount of energy radiated in a given simulation cycle complies with this constraint. The hope is that by limiting the energy change, other material properties can also change sufficiently rapidly, thereby resulting in a more accurate simulation. The default value allows a 90% change in the specific internal energy. The time step computed by this feature is reported in the global tally DT_EMITTION.

Example:

emission
  ...
  max energy change 0.40 $ fraction
end

8.3.8 Solution Method

{NEWTON (default) | BISECT}

If the NEWTON keyword is present, it explicitly forces use of the default Newton iteration method.

If the BISECT keyword is present then the Newton algorithm will incorporate a bisection step into it. Use this for the BREMSSTRAHLUNG emission option as the cooling function is non-monotonic. This option does not need to be specified for the BLACKBODY or PLANCK option.

8.3.9 Maximum Newton Iterations

MAXIMUM NEWTON ITERATIONS int (1)
Optionally specifies the maximum number of Newton iterations. A warning will occur if the maximum number of Newton iterations is exceeded and the solution tolerance remains less than the tolerance specified by the TOLERANCE keyword. Quite often it is sufficient to give this parameter a value of just 2.

### 8.3.10 Newton Iteration Tolerance

TOLERANCE real (1.0e-6)

Optional accuracy level setting for Newton iteration solution of emission energy equation. The default value is 1.0e-6.
9 Aztec Input

Both the TRANSIENT MAGNETICS and the THERMAL CONDUCTION packages use the Aztec library [28] to solve the discrete partial differential equations that govern their physics. Aztec is an iterative solver library with many options for solving linear systems of equations. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES), and stabilized biconjugate gradient (BiCGSATB).

The AZTEC keyword set may appear as many times as desired. Different physics packages may utilize different AZTEC control sets as specified by using

AZTEC SET id(integer)

in the specific physics input section. The default AZTEC SET id-number is 0 which defaults to the conjugate gradient algorithm with symmetric diagonal scaling and other default options described below. The developers do not recommend that you blindly use the default settings as they are most likely not optimal for your particular simulations. Multigrid technology found in the associated ML package is required to achieve scalable solve times for very large problems. The Aztec [28] and ML [27] documentation give a descriptions of options. The three-dimensional magnetic field discretization and multigrid solution research and development can be reviewed in several references [1, 2, 3, 12, 24].

Most but not all AZTEC options have been implemented in the ALEGRA interface. However only the most important and useful options are listed in this section.

Example:

aztec 1 $ 3D simulation ONLY, mag control
    solver  = cg
    scaling = none
    conv norm = rhs
    output = none
    max iter = 1000 $ something is wrong after a few hundred iterations
    tol    = 1.e-10 $ this may need to be reduced (problem specific)
    multilevel

88
fine sweeps = 1
fine smoother = Hiptmair
coarse smoother = LU
multigrid levels = 10
interpolation algorithm = AGGREGATION
hiptmair subsmoother = GAUSS SEIDEL $ for serial runs
$hiptmair subsmoother = MLS $ for parallel runs > 4PE
SMOOTH PROLONGATOR
end
end

In the descriptions below the first listed option is the ALEGRA default. These are not necessarily the same as the AZTEC defaults.

### 9.1 Basic Aztec Input

AZTEC [int]

[basic aztec keyword]

...  
END

This section describes the basic (non-multilevel) Aztec control options.

**Solver**

SOLVER, {CG (default) | GMRES | CGS | TFQMR | BICGSTAB | LU |
GMRESR | FIXED PT | SYMMLQ}

Note that CG (conjugate gradient) is applicable only to physics packages which are based on symmetric operators. These include 2D and 3D TRANSIENT MAGNETICS, and the THERMAL CONDUCTION package. The LU option uses the familiar LU-decomposition direct solution method, which is only available in serial mode and will likely quickly exhaust memory for sizable problems. For small serial test simulations, LU is a good option. CG by itself will not work effectively for 3D TRANSIENT MAGNETICS solutions.
Scaling

SCALING, {SYM_DIAG (default) | NONE | JACOBI | BJACOBI | ROW_SUM | SYM_ROW_SUM}

The SYM_DIAG option is only available for physics packages based on symmetric operators, such as 2D TRANSIENT MAGNETICS and the THERMAL CONDUCTION package. It is highly recommended for these.

Preconditioner

PRECONDITIONER, {NONE (default) | JACOBI | NEUMANN | LS | SYM_GS | DOM_DECOMP}

The SYM_GS option has proven quite effective for those physics packages that are based on symmetric operators. However, it has been discovered that it is possible for the actual solution accuracy to vary significantly with the preconditioner option for a given fixed tolerance value. In particular the JACOBI and SYM_GS preconditioners used with conjugate gradient may cause a significantly less accurate answer than would be obtained without the preconditioner for the same tolerance value. See the ignore scaling option.

Subdomain Solver

SUBDOMAIN SOLVER, {LU | ILUT (default) | ILU | RILU | BILU | ICC}

ICC can be used with symmetric operators.

Convergence Norm

CONVERGENCE NORM, {R0 (default) | RHS | ANORM | NOSCALE | SOL | expected values}

Various norm options are available. Users of the code MUST ensure that their solutions are accurate relative to the chosen convergence norm and the chosen tolerance value. (The AZTEC weighted option is not supported in ALEGRA).
Output

OUTPUT, \{NONE (default) \mid ALL \mid WARNINGS \mid LAST \mid int>0\}

Note that no Aztec output is the default for ALEGRA. You must specifically request Aztec output if you want Aztec to tell you about the iterative solve. Transient magnetics will output Aztec information to the HISPLT file.

Maximum Iterations

MAXIMUM ITERATIONS, int>0 (500)

Tolerance

TOLERANCE, real (1.e-12)

WARNING! This default may not be appropriate for some CONVERGENCE NORM options and physics problems. The user is responsible to convince himself that the tolerance specified is sufficient for an otherwise FIXED set of AZTEC options. See the discussion under preconditioners.

9.2 Multilevel Input

AZTEC [int]
[basic aztec keyword]
...
MULTILEVEL
[multilevel keyword]
...
END

This section describes the multilevel Aztec control options.
Multigrid Levels

MULTIGRID LEVELS, int (10)

Fine Sweeps

FINE SWEEPS, int (2)

The number of pre and post smoother sweeps to apply at each level.

Fine smoother

FINE SMOOTHER, {GAUSS SEIDEL | JACOBI | LU | AZTEC int (0) |
HIPTMAIR (Hcurl only) | MLS}

Default is automatically determined depending on matrix type. This is the type of smoother applied on each of the fine levels. The AZTEC int is the AZTEC SET int id to be used by the fine smoother.

Coarse Sweeps

COARSE SWEEPS, int (2)

Number of solver sweeps to apply at the coarse level if the coarse smoother is an iterative solver.

Coarse smoother

COARSE SMOOTHER, {GAUSS SEIDEL | JACOBI | LU (default) | AZTEC int (0) |
HIPTMAIR (Hcurl only) | MLS}

The AZTEC int is the AZTEC SET int id to be used by the coarse smoother.
Interpolation Algorithm

INTERPOLATION ALGORITHM, \{UC AGGREGATION | MIS AGGREGATION |
UC MIS AGGREGATION (aka AGGREGATION, default)\}

Verbose

VERBOSE, int (0)

Positive integer gives level of multigrid verbose output. Value ranges from 0 to 10. Used primarily to debug ML.

Smooth Prolongator

SMOOTH PROLONGATOR (off)

Smooth Reitzinger/Schoeberl prolongator for Hiptmair. A useful option for 3D magnetics.

Hiptmair Subsmoother

HIPTMAIR SUBSMOOTHER, \{GAUSS SEIDEL (default) | MLS\}

This is the subsmoother uses by Hiptmair smoothing.
10 Materials and Material Models Input

10.1 Materials

The MATERIAL keyword is explained fully the basic ALEGRA manual [4]. In this version of ALEGRA, some of the material models get some of their information from the MATERIAL keyword block, namely the atomic composition as defined by the NUMBER OF ELEMENTS keyword. This allows each material to be treated consistently and with a minimum of input required from the user. Currently, QEOS requires the material composition to be entered here. The XSN material composition may be entered here or under the XSN model. The material input format is:

```
MATERIAL int [string]
 MODEL int
 [MODEL int]
 variable_name real
 [variable_name real]
 [NUMBER OF ELEMENTS int
 ELEMENT int, MASS real, FRACTION real
 ...]
END
END
```

Example of material input:

```
block 1
 material 201 $ see BLOCK input for this item
end

material 201 "Air"
 model 11 $ EOS
 model 12 $ XSN
 number of elements 3
 element 7, mass 14.007, fraction 0.7809
 element 8, mass 16.000, fraction 0.2095
 element 18, mass 39.948, fraction 0.0096
end
end
```
10.2 Material Models

MODEL int model_name
    parameter [int|real]
    parameter = [int|real]
    ...
END

The following sections describe the various material models that support MHD applications. In each of the material model descriptions that follow, two tables are presented for each MODEL. The first table lists and defines the user specifiable input parameters. These parameters are to be listed withing the MODEL ... END keyword block in the input deck. The second table lists the registered code variables input to and output from the various models. These variables are available for plotting and are to be listed within the PLOT VARIABLES ... END keyword block in the input deck.

A list of the currently available models is provided in Table 9. The models are categorized into general model types.

<table>
<thead>
<tr>
<th>General Material Model Type</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Electrical/Thermal Conductivity</td>
<td>LMD</td>
</tr>
<tr>
<td></td>
<td>SPITZER</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>EC ANOMALOUS</td>
</tr>
<tr>
<td></td>
<td>EC KNOEPFEL</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>CONSTANT THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td></td>
<td>PLASMA</td>
</tr>
<tr>
<td></td>
<td>POLYNOMIAL</td>
</tr>
<tr>
<td>Opacity</td>
<td>KRAMERS FITTED</td>
</tr>
<tr>
<td></td>
<td>XSN</td>
</tr>
<tr>
<td>Ionization State</td>
<td>SAHA IONIZATION</td>
</tr>
</tbody>
</table>

The material models listed in Table 10 are considered to be obsolete and may be deleted from ALEGRA in the near future.
Table 10. Obsolete Material Model Types and Model Names.

<table>
<thead>
<tr>
<th>General Material Model Type</th>
<th>Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Conductivity</td>
<td>KEC SESAME</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>KTC SESAME</td>
</tr>
<tr>
<td>Ionization State</td>
<td>KZB SESAME</td>
</tr>
</tbody>
</table>
10.3 Combined Electrical and Thermal Conductivity Models

Electrical conductivity models are used by TRANSIENT MAGNETICS to close the coupled set of hydrodynamics and Maxwell’s equations by using Ohm’s law which relates the current density \( \vec{J} \) to the electric field \( \vec{E} \) and the cross product of the velocity \( \vec{v} \) and magnetic field \( \vec{B} \),

\[
\vec{J} = \sigma \left( \vec{E} + \kappa_3 \vec{v} \times \vec{B} \right).
\] (50)

where \( \sigma \) is the electrical conductivity. This is the simplest form of Ohm’s law.

THERMAL CONDUCTION physics solves the thermal heat conduction equation. The heat flux \( \vec{q} \) is related to the temperature gradient by

\[
\vec{q} = -k \nabla T,
\] (51)

where the constant of proportionality \( k \) is the thermal conductivity. The heat flux \( \vec{q} \) has dimensions of energy/area/time, the temperature has dimensions of Kelvin (K), so the thermal conductivity \( k \) has dimensions energy/length/time/K.

Some models provide both electrical and thermal conductivities. Others provide only one or the other. The user must provide a set of models which will uniquely provide the required parameters for the physics which is requested. NOTE: If overlapping models are requested in the sense that two models provide the same output, then the code will use the last model listed to provide that given output.

10.3.1 LMD Conductivities

MODEL model_id_number LMD
    [parameter = value]
    ...
END

The Lee-More-Desjarlais (LMD) model [5, 6] is an extension of the Lee-More model [17] that provides much better agreement with measured electrical conductivities in the vicinity of the metal-insulator transition and yet smoothly blends with the Lee-More model away from this regime. The conductivities generated by the two models can differ by several
orders of magnitude with the largest differences occurring for densities one to two orders of magnitude below solid density and temperatures below 2 eV. The model also outputs the thermal conductivities, as well as the ionization state, so that no separate thermal conductivity need be computed. This conductivity model also includes the effect of magnetic fields on the conductivity. The conductivities returned are those parallel and perpendicular to the magnetic field. The proper coordinate transformation between this magnetically oriented system and the computational coordinates needs to be ensured. The most significant changes in this model, relative to the Lee-More model, are an improved ionization model and a new expression for the minimum allowed collision time. The new ionization model blends the Thomas-Fermi ionization with a first-ionization Saha model. The Saha contribution is non-ideal in that a pressure ionization term is used to reduce the ionization energy near solid densities. The ionization state calculated with this model is a significant improvement over the Thomas-Fermi ionization in the vicinity of the metal-insulator transition, particularly for temperatures below 3 eV or so. The new expression for the minimum allowed collision time introduces a power law dependence on density through the \( p_2 \) parameter. This dependence is in agreement with the measured conductivities at low temperatures and densities below solid and effectively bridges the metal, liquid, and plasma conductivity regimes. It is anticipated that for most applications the user will make use of predefined parameter sets for each material of interest, linked to the \( Z \) for the material. These parameters may be overridden if the user wishes to experiment with modeling unsupported materials. The model is sufficiently robust that if the user supplies \( Z, A, \text{RHO SOLID}, \text{TMELT}, \text{and XIEV} \), and accepts the defaults for the other parameters, reasonably good metallic conductivities will be generated.

In place of the \( p_2, p_3, \) and \( p_4 \) parameters of the generic Lee-More model, we now have

\[
p_2 = \min \left[ p_{2a} \frac{\bar{V}_e}{\sqrt{2E_F/m_e}} \left( \frac{n_a}{2 \cdot 10^{22}} \right)^{2/p_T} \right], \tag{52}
\]

\[
p_3 = \frac{p_{3a}}{2} \left( 1 + \left( \frac{T_m}{T} \right)^{p_{3b}^T \text{fact}} \right), \tag{53}
\]

\[
p_4 = \frac{p_{4a}}{2} \left( 1 + \left( \frac{T_m}{T} \right)^{p_{4b}^T \text{fact}} \right), \tag{54}
\]

where

\[
p_T = 1 + \exp \left( \frac{T - 25000}{10000} \right), \tag{55}
\]

98
\[ r_{fact} = \sqrt{\frac{2}{\left(\left(\frac{\rho}{\rho_s}\right)^2 + \left(\frac{\rho_s}{\rho}\right)^2\right)}}. \] (56)

\( T_m \) is the melt temperature and \( \rho_s \) is the material solid density. These constructions for \( P_3 \) and \( P_4 \) are used primarily for fine tuning the solid density conductivity as a function of temperature, including the drop in conductivity at melt which is determined by the relation:

\[ \tau_{liq} = \frac{\tau_{BG} T}{P_4 T + P_5} \] (57)

for \( T \geq T_m \). The net effect of these changes to \( P_3 \) and \( P_4 \) are relatively minor. Note the new parameter \( P_5 \) which is useful for matching the conductivity above melt for some materials, notably aluminum.

The correct parameters for some materials have been incorporated into the model. For these materials, one needs only to specify the atomic number, \( Z \), or in the case of deuterium, also specify the atomic mass, \( A \) as 2. The code will set the remaining parameters correctly. Currently featured materials include those found in Table 11.

<table>
<thead>
<tr>
<th>( Z )</th>
<th>( A )</th>
<th>Symbol</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.</td>
<td>D</td>
<td>Deuterium</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>73</td>
<td>-</td>
<td>Ta</td>
<td>Tantalum</td>
</tr>
<tr>
<td>74</td>
<td>-</td>
<td>W</td>
<td>Tungsten</td>
</tr>
<tr>
<td>79</td>
<td>-</td>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Air</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LXN (i.e., lexan)</td>
</tr>
</tbody>
</table>

Certain materials have been researched through quantum molecular dynamics (QMD) simulations and the LMD model has been specifically "tuned" for these materials. The tuned materials are listed in Table 12 and are accessed by using the "TUNED" keyword listed in the table. Setting the \( Z \) parameter is optional.
Table 12. Tuned Materials for LMD.

<table>
<thead>
<tr>
<th>Z</th>
<th>A</th>
<th>Symbol</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-</td>
<td>Al</td>
<td>TUNED ALUMINUM</td>
</tr>
<tr>
<td>74</td>
<td>-</td>
<td>W</td>
<td>TUNED TUNGSTEN</td>
</tr>
</tbody>
</table>

Note: there is no option for reverting to the original Lee More model for comparison purposes.

- Modules: material.libs/ec
  - ec_lmd.h
  - ec_lmd.C
  - lmd_setup.h
  - lmd.F
  - coulomb_logarithm.C

- Physics:
  - transient magnetics
  - all magnetohydrodynamics physics options

Table 13: Input Parameters for LMD.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>real</td>
<td>Atomic number (this is the only required parameter)</td>
</tr>
<tr>
<td>A</td>
<td>real</td>
<td>Atomic mass</td>
</tr>
<tr>
<td>RHO SOLID</td>
<td>real</td>
<td>Material solid density</td>
</tr>
<tr>
<td>TMELT</td>
<td>real</td>
<td>Specifies the solid density melt temperature. This scales the usual Cowan melt temperature calculation so that the melt temperature will be correct at solid density, but is still a function of density. Calculated if TMELT .le. 0.</td>
</tr>
<tr>
<td>XIEV</td>
<td>real</td>
<td>The energy of the first ionization in eV</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG LAMBDA MIN</td>
<td>real</td>
<td>The minimum allowed value of the Coulomb logarithm</td>
</tr>
<tr>
<td>G0, G1</td>
<td>real</td>
<td>The spin level degeneracy factors ((2J+1)) for the ground state and first ionization, respectively</td>
</tr>
<tr>
<td>P1</td>
<td>real</td>
<td>Multiplier on the average distance between ions (R_0 = (4\pi\rho/3Am_i)^{-1/3}), used when comparing to the Debye-Huckel screening length and choosing the larger value to be the maximum impact parameter for the Coulomb logarithm</td>
</tr>
<tr>
<td>P2A, P2B</td>
<td>real</td>
<td>Used to construct the multiplier (P_2) on the minimum electron relaxation time which is equal to the average distance between ion divided by the mean electron thermal velocity, ((3kT/m_e)^{1/2})</td>
</tr>
<tr>
<td>P2C, P2D, P2E</td>
<td>real</td>
<td>Default: (P2C = 25000.0, P2D = 2.0E22, P2E = 2.0)</td>
</tr>
<tr>
<td>P3A, P3B</td>
<td>real</td>
<td>Used to construct the multiplier (P_3) on the electron relaxation time in the Bloch-Gruneisen regime (below the melt temperature)</td>
</tr>
<tr>
<td>P4A, P4B</td>
<td>real</td>
<td>Used to construct the multiplier (P_4) on the electron relaxation time in the Bloch-Gruneisen regime (above the melt temperature)</td>
</tr>
<tr>
<td>P5</td>
<td>real</td>
<td>Used to fine tune the solid density conductivity above melt</td>
</tr>
<tr>
<td>EC FLOOR</td>
<td>real</td>
<td>Minimum electrical conductivity value (default = 0.)</td>
</tr>
<tr>
<td>EC MULTIPLIER</td>
<td>real</td>
<td>Electrical conductivity multiplier (default = 1.)</td>
</tr>
<tr>
<td>TC FLOOR</td>
<td>real</td>
<td>Minimum thermal conductivity value (default = 0.)</td>
</tr>
<tr>
<td>TC MULTIPLIER</td>
<td>real</td>
<td>Thermal conductivity multiplier (default = 1.)</td>
</tr>
</tbody>
</table>

*continued on next page*
<table>
<thead>
<tr>
<th><strong>continued from previous page</strong></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ANOMALOUS</strong></td>
<td>real</td>
<td>If greater than 0., will enable an anomalous collisionality in low density, high temperature regions. A value of 1.0 is nominal. See the SPITZER model for details. (default = 0.)</td>
</tr>
<tr>
<td><strong>TEMPERATURE CUTOFF</strong></td>
<td>real</td>
<td>The minimum temperature used to evaluate the conductivities (default = 0.)</td>
</tr>
<tr>
<td><strong>USE PARALLEL CONDUCTIVITY</strong></td>
<td>real</td>
<td>The LMD model returns the values of the conductivities perpendicular to the magnetic field by default. If not equal to 0., the LMD model will return the values of the conductivities parallel to the magnetic field. (default = 0.)</td>
</tr>
<tr>
<td><strong>PRESSURE IONIZATION PREFACTOR</strong></td>
<td>real</td>
<td>(default = 1.5)</td>
</tr>
<tr>
<td><strong>PRESSURE IONIZATION EXPONENT</strong></td>
<td>real</td>
<td>(default = 1.5)</td>
</tr>
<tr>
<td><strong>DIPOLE ALPHA</strong></td>
<td>real</td>
<td>(default = 50.0)</td>
</tr>
<tr>
<td><strong>EXTERNAL ZBAR</strong></td>
<td>none</td>
<td>Allows LMD to use a zbar other than the internally calculated one. NOTE: A zbar calculating model MUST be called before LMD. (default = off)</td>
</tr>
<tr>
<td><strong>TUNED ALUMINUM</strong></td>
<td>real</td>
<td>Allows the QMD aluminum specific coding to be called. This must be used in addition to Z = 13. (default = off)</td>
</tr>
<tr>
<td><strong>MATERIAL</strong></td>
<td>string</td>
<td>This can be used to call default mixed material settings. NOTE: This option will override the Z parameter, but none of the other parameters.</td>
</tr>
</tbody>
</table>

Examples:

```plaintext
model 1 lmd
 z = 13.
 tuned aluminum
end

model 1 lmd
 z = 74.
end
```

102
### Table 14. Registered Plot Variables for LMD.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ECON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity used</td>
</tr>
<tr>
<td>ECON_PAR</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity parallel to the magnetic field</td>
</tr>
<tr>
<td>ECON_PERP</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity transverse to the magnetic field</td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity used</td>
</tr>
<tr>
<td>THERMAL_CON_PAR</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity parallel to the magnetic field</td>
</tr>
<tr>
<td>THERMAL_CON_PERP</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity transverse to the magnetic field</td>
</tr>
<tr>
<td>ZBAR</td>
<td>real</td>
<td>OUTPUT</td>
<td>Average ionization state</td>
</tr>
</tbody>
</table>
10.3.2 Spitzer Conductivities

The SPITZER conductivity model [26] is valid for high temperature plasmas above 1 eV temperature. The model computes electrical conductivity components parallel and perpendicular to the magnetic field.

\[
\sigma_{||}(\rho, T) = (\gamma_e) \frac{2(2kT)^{3/2}}{\pi^{3/2}m_e^{1/2}Z^2e^2c^2\ln\Lambda} \cdot \frac{1}{f_{anom}}
\]

\[
\sigma_{\perp}(\rho, T) = \left(\frac{3\pi}{32}\right) \frac{2(2kT)^{3/2}}{\pi^{3/2}m_e^{1/2}Z^2e^2c^2\ln\Lambda} \cdot \frac{1}{f_{anom}}
\]

By default, the model returns the values of the perpendicular electric conductivity.

The model also computes thermal conductivity components parallel and perpendicular to the magnetic field.

\[
\kappa_{||}(\rho, T) = (\delta_T)20 \left(\frac{2}{\pi}\right)^{3/2} \frac{(kT)^{5/2}k}{m_e^{1/2}e^4Z\ln\Lambda} \cdot \frac{1}{f_{anom}}
\]

\[
\kappa_{\perp}(\rho, T) = \frac{8}{3} \left(\pi m_i k\right)^{1/2} \frac{n_i^2 Z^2 e^2 c^2 \ln\Lambda}{T^{1/2} B^2} \cdot f_{anom}
\]

By default, the model returns the minimum of these two thermal conductivities.

In low-density, high-temperature plasmas in a strong magnetic field, the electrical conductivity may be reduced by an anomalous factor, \( f_{anom} \geq 1 \) [25]. This factor also enhances the value of the perpendicular thermal conductivity, and reduces the value of the parallel thermal conductivity as shown in the above formulas. These anomalous conductivities are
enabled by setting the input parameter \texttt{ANOMALOUS} > 0., where a value of 1.0 is nominal. A value greater than 1 increases this effect and a value less than 1 reduces this effect. In CGS units with the electron temperature expressed in eV, then the anomalous factor is:

\[
    f_{\text{anom}} = 1 + P_{\text{anomalous}} \frac{v^*}{v_{ei}}
\]

\[
    v^* = \Omega_e \sqrt{\left(\frac{Z m_e}{(A m_{amu})}\right)} \left(\frac{V_d}{V_{th}}\right)^2
\]

\[
    v_{ei} = 2.9 \times 10^{-6} \left(\frac{\bar{Z}^2 N_i \log \Lambda}{T_e^{3/2}}\right)
\]

\[
    V_d = |\vec{J}|/(\bar{Z} e N_i)
\]

\[
    V_{th} = \sqrt{(2 k_B T_i)/(A m_{amu})}
\]

where \(P_{\text{anomalous}}\) is the \texttt{ANOMALOUS} input parameter, \(v^*\) is an anomalous collision frequency, \(v_{ei}\) is the electron-ion collision frequency, \(\Omega_e = \langle e | \vec{B} | \rangle/(m_e c)\) is the electron cyclotron frequency, \(V_d\) is a drift velocity, \(V_{th}\) is the ion thermal velocity, \(\bar{Z}\) is the average ionization state, \(A\) is the atomic mass, and \(N_i\) is the ion number density.

The parameters \texttt{COLD ECON} and \texttt{COLD TCON} are a simplified attempt to extend the \texttt{SPITZER} model below the Spitzer regime. A better approach is to use the \texttt{LMD} model. If these parameters are non-zero and if the ionization state \(\bar{Z}\) is less than 1, this model will use \(\bar{Z}\) to linearly interpolate between the cold value and the Spitzer value with \(\bar{Z} = 1\).

\[
    \sigma = \begin{cases} 
    (1 - \bar{Z}) \sigma_{\text{cold}} + \bar{Z} \sigma_{\text{Spitzer}}, & \bar{Z} < 1 \\
    \sigma_{\text{Spitzer}}, & \bar{Z} \geq 1 
    \end{cases}
\]

\[
    \kappa = \begin{cases} 
    (1 - \bar{Z}) \kappa_{\text{cold}} + \bar{Z} \kappa_{\text{Spitzer}}, & \bar{Z} < 1 \\
    \kappa_{\text{Spitzer}}, & \bar{Z} \geq 1 
    \end{cases}
\]

- Modules: material\_libs/ec
  - ec\_spitzer.h
  - ec\_spitzer.C
  - coulomb\_logarithm.C
- Physics:
– transient magnetics
– all magnetohydrodynamics physics options

Table 15: Input Parameters for SPITZER.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>real</td>
<td>Atomic mass</td>
</tr>
<tr>
<td>Z</td>
<td>real</td>
<td>Atomic number</td>
</tr>
<tr>
<td>FIXED ZBAR</td>
<td>real</td>
<td>Overrides any ionization model with a constant value for the ionization state (optional)</td>
</tr>
<tr>
<td>FIXED COULOG</td>
<td>real</td>
<td>Overrides the coulomb logarithm calculation with a constant value (optional)</td>
</tr>
<tr>
<td>EC MULTIPLIER</td>
<td>real</td>
<td>May be used to scale the electrical conductivity (optional)</td>
</tr>
<tr>
<td>TC MULTIPLIER</td>
<td>real</td>
<td>May be used to scale the thermal conductivity (optional)</td>
</tr>
<tr>
<td>COLD ECON</td>
<td>real</td>
<td>Electrical conductivity value when ZBAR&lt;1.0 (optional)</td>
</tr>
<tr>
<td>COLD TCON</td>
<td>real</td>
<td>Thermal conductivity value when ZBAR&lt;1.0 (optional)</td>
</tr>
<tr>
<td>ANOMALOUS</td>
<td>real</td>
<td>If greater than 0., will enable an anomalous collisionality in low density, high temperature regions. A value of 1.0 is nominal. (default = 0.)</td>
</tr>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Model is called with the maximum of the material temperature or the cutoff temperature. (optional)</td>
</tr>
<tr>
<td>USE PARALLEL CONDUCTIVITY</td>
<td>real</td>
<td>Setting this parameter to be non-zero causes the parallel value of the conductivity will be used. (optional)</td>
</tr>
<tr>
<td>USE PERPENDICULAR CONDUCTIVITY</td>
<td>real</td>
<td>Setting this parameter to be non-zero causes the perpendicular value of the conductivity will be used. (optional)</td>
</tr>
</tbody>
</table>
Table 16. Registered Plot Variables for SPITZER.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ECON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>ECON_PAR</td>
<td>real</td>
<td>OUTPUT</td>
<td></td>
</tr>
<tr>
<td>ECON_PERP</td>
<td>real</td>
<td>OUTPUT</td>
<td></td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>THERMAL_CON_PAR</td>
<td>real</td>
<td>OUTPUT</td>
<td></td>
</tr>
<tr>
<td>THERMAL_CON_PERP</td>
<td>real</td>
<td>OUTPUT</td>
<td></td>
</tr>
<tr>
<td>COULOG</td>
<td>real</td>
<td>OUTPUT</td>
<td>Coulomb logarithm</td>
</tr>
</tbody>
</table>
10.4 Electrical Conductivity Models

10.4.1 EC Anomalous Conductivity

MODEL model_id_number EC ANOMALOUS
   [parameter = value]
   ...
END

This is a density and temperature independent model that returns one of two user specified values for the conductivity depending upon the value of the cell-centered current density, \( J_E \). This model is given by

\[
\sigma(\rho, T) = \begin{cases} 
\sigma_0, & |\vec{J}_E| \leq J_{anom} \\
\sigma_1, & |\vec{J}_E| > J_{anom}
\end{cases}
\]  \hspace{1cm} (65)

The model is parametrized by the constants \( \sigma_0, \sigma_1, \) and the magnitude of the current density \( J_{anom} \). The orientation of the current density is inconsequential.

- Modules: material_libs/ec
  - ec_anomalous.h
  - ec_anomalous.C

- Physics:
  - transient magnetics
  - all magnetohydrodynamics physics options

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGMA0</td>
<td>real</td>
<td>Reference conductivity, ( \sigma_0 )</td>
</tr>
<tr>
<td>SIGMA1</td>
<td>real</td>
<td>Reference conductivity, ( \sigma_1 )</td>
</tr>
<tr>
<td>JANOM</td>
<td>real</td>
<td>Threshold current density, ( J_{anom} )</td>
</tr>
</tbody>
</table>
Table 18. Registered Plot Variables for EC ANOMALOUS.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ECON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>

10.4.2 EC Knoepfel Conductivity

MODEL model_id_number EC KNOEPFEL
  [parameter = value]
  ...
END

A low temperature model called the Knoepfel model [16] is reasonable for metals from about 100 K up to the melting point. This model is given by

\[
\sigma(\rho, T) = \max \left( \frac{\sigma_0}{1 + \beta C_v (T - T_0)} \left( \frac{\rho}{\rho_0} \right)^\alpha, \sigma_{\text{min}} \right)
\]  

(66)

The model is parametrized by the constants \( \sigma_0, \rho_0, \alpha, \) and \( \beta C_v \). A constant conductivity may be obtained by setting \( \alpha = 0 \) and \( \beta C_v = 0 \). A reasonable guess for \( \alpha \) given no other information is twice the Gruneisen coefficient for the material. At a minimum this model can achieve a drop in conductivity with temperature. It cannot deal with the melt transition however. The conductivity floor is not part of the model given by Knoepfel, but is added for additional flexibility.

- Modules: material_libs/ec
  - ec_knoepfel.h
  - ec_knoepfel.C
- Physics:
  - transient magnetics
  - all magnetohydrodynamics physics options
Table 19. Input Parameters for EC KNOEPFEL.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGMA0</td>
<td>real</td>
<td>Reference conductivity, $\sigma_0$</td>
</tr>
<tr>
<td>RH00</td>
<td>real</td>
<td>Model reference density, $\rho_0$</td>
</tr>
<tr>
<td>T0</td>
<td>real</td>
<td>Model reference temperature, $T_0$</td>
</tr>
<tr>
<td>ALPHA</td>
<td>real</td>
<td>Density exponent, $\alpha$</td>
</tr>
<tr>
<td>BETACV</td>
<td>real</td>
<td>Temperature coefficient, $\beta C_v$</td>
</tr>
<tr>
<td>SIGMAMIN</td>
<td>real</td>
<td>Minimum conductivity, $\sigma_{min}$</td>
</tr>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Model is called with the maximum of the material temperature or the cutoff temperature</td>
</tr>
</tbody>
</table>

Table 20. Registered Plot Variables for EC KNOEPFEL.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ECON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>

10.4.3 KEC Sesame Conductivity

MODEL model_id_number KEC SESAME
   [parameter = value]
   ...
END

Electrical conductivity as found in tabular form in Kerley Sesame format [11]. Internally this is the 602 Sesame table. This is not really a model. It is a software interface. The origins of any table used here must be carefully researched and understood.

- Modules: material_libs/kerley_eos/sesame
  - sec_mig.h
  - sec_mig.C
  - secmig.F
- Physics:
– transient magnetics
– all magnetohydrodynamics physics options

Table 21. Input Parameters for KEC SESAME.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEC</td>
<td>string</td>
<td>Table file name</td>
</tr>
<tr>
<td>NEC</td>
<td>integer</td>
<td>Table Number</td>
</tr>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Model is called with the maximum of the material temperature or the cutoff temperature.</td>
</tr>
</tbody>
</table>

Table 22. Registered Plot Variables for KEC SESAME.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ECON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>

Example:

model, 2, kec sesame
    fec = 'ses600'
    nec = 3109
end
10.5 Thermal Conductivity Models

10.5.1 Constant Thermal Conductivity

MODEL model_id_number CONSTANT THERMAL CONDUCTIVITY
    [parameter = value]
    ...
END

The CONSTANT THERMAL CONDUCTIVITY model allows the user to specify a simple constant conductivity.

\[ \kappa(\rho, T) = \kappa_0 \]  \hspace{1cm} (67)

- Modules: material_libs/thermal_con_models
  - constant_con.h
  - constant_con.C
- Physics: thermal conduction and its derivatives

Table 23. Input Parameters for CONSTANT THERMAL CONDUCTIVITY.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONSTANT</td>
<td>real</td>
<td>Constant thermal conductivity, ( \kappa_0 )</td>
</tr>
</tbody>
</table>

Table 24. Registered Plot Variables of CONSTANT THERMAL CONDUCTIVITY.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity</td>
</tr>
</tbody>
</table>
10.5.2 Plasma Thermal Conductivity

MODEL model_id_number PLASMA
  [parameter = value]
  ...
END

The PLASMA thermal conductivity model is a simple power law of the form:

$$\kappa(\rho, T) = A\rho^B T^C.$$  \hspace{2cm} (68)

Similar to the SPITZER conductivity model if $B = 0$ and $C = 5/2$, it can be used to study deviations from pure Spitzer-like behavior. It can also be used to specify a constant conductivity.

- Modules: material_libs/thermal_con_models
  - plasma.h
  - plasma.C
- Physics: thermal conduction and its derivatives

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>real</td>
<td>Thermal conductivity coefficient (note that conductivities obtained from tables may need to be scaled if $B$ or $C$ are nonzero)</td>
</tr>
<tr>
<td>B</td>
<td>real</td>
<td>Density exponent</td>
</tr>
<tr>
<td>C</td>
<td>real</td>
<td>Temperature exponent</td>
</tr>
</tbody>
</table>

10.5.3 Polynomial Thermal Conductivity

MODEL model_id_number POLYNOMIAL
  [parameter = value]
  ...
END
**Table 26.** Registered Plot Variables of PLASMA.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity</td>
</tr>
</tbody>
</table>

The POLYNOMIAL thermal conductivity model is a simple power law model that depends only on temperature:

\[
\kappa(\rho, T) = A_0 + A_1 \cdot T^{N_1} + A_2 \cdot T^{N_2} + A_3 \cdot T^{N_3}.
\] (69)

- Modules: material_libs/thermal_con_models
  - polynomial_con.h
  - polynomial_con.C
- Physics: thermal conduction and its derivatives

**Table 27.** Input Parameters for POLYNOMIAL.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>real</td>
<td>Constant coefficient</td>
</tr>
<tr>
<td>A1</td>
<td>real</td>
<td>Coefficient of first temperature term</td>
</tr>
<tr>
<td>A2</td>
<td>real</td>
<td>Coefficient of second temperature term</td>
</tr>
<tr>
<td>A3</td>
<td>real</td>
<td>Coefficient of third temperature term</td>
</tr>
<tr>
<td>N1</td>
<td>real</td>
<td>Power of first temperature term</td>
</tr>
<tr>
<td>N2</td>
<td>real</td>
<td>Power of second temperature term</td>
</tr>
<tr>
<td>N3</td>
<td>real</td>
<td>Power of third temperature term</td>
</tr>
</tbody>
</table>

10.5.4 KTC Sesame Thermal Conductivity

MODEL model_id_number KTC SESAME
  [parameter = value]
  ...
END
Table 28. Registered Plot Variables of POLYNOMIAL.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Thermal conductivity</td>
</tr>
</tbody>
</table>

Thermal conductivity as found in tabular form in Kerley Sesame format [11]. Internally this is the 603 Sesame table. This is not really a model. It is a software interface. The origins of any table used here must be carefully researched and understood.

- Modules: material\_libs/kerley\_eos/sesame
  - stc\_mig.h
  - stc\_mig.C
  - stcmig.F
- Physics: thermal conduction and its derivatives

Table 29. Input Parameters for KTC SESAME.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTC</td>
<td>String</td>
<td>Table file name</td>
</tr>
<tr>
<td>NTC</td>
<td>int</td>
<td>Table Number</td>
</tr>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Minimum temperature</td>
</tr>
</tbody>
</table>

Table 30. Registered Plot Variables of KTC SESAME.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>THERMAL_CON</td>
<td>real</td>
<td>OUTPUT</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>
Example:

```plaintext
model, 4, ktc sesame
 ftc = 'ses600'
 ntc = 3109
end
```
10.6 Opacity Models

Opacity models calculate radiation absorption and emission coefficients for radiation and radiation hydrodynamics simulations. Currently recognized opacity model names are listed in Table 9 on page 95.

If possible and if needed or requested, ALEGRA’s opacity models compute both the average Planck absorption opacity $\tau_{ag}$ and average Rosseland opacity $\tau_{rg}$ in units of (1/length). These opacities are defined according to

$$\tau_{ag} = \frac{\rho \int_{E_g}^{E_{g+1}} \sigma_a(E)B(T_m, E)dE}{\int_{E_g}^{E_{g+1}} B(T_m, E)dE} \tag{70}$$

and

$$\frac{1}{\tau_{rg}} = \frac{\int_{E_g}^{E_{g+1}} \frac{1}{\sigma_t(E)} \frac{\partial B(T_m, E)}{\partial T}dE}{\rho \int_{E_g}^{E_{g+1}} \frac{\partial B(T_m, E)}{\partial T}dE} \tag{71}$$

where $B(T_m, E)$ is the blackbody function, $\sigma_a(E)$ is the absorption cross section, $\sigma_t(E) = \sigma_a(E) + \sigma_s(E)$ is the total cross section (both in units of (length$^2$/mass)), and integrations are computed over the group boundaries. The Planck average involves only the absorption cross section is used for the radiation emission and absorption rates of materials. The Rosseland average involves the total cross section and is used for the diffusion coefficient of radiation transport methods.

10.6.1 Kramers Fitted Opacity

MODEL model_id_number KRAMERS FITTED
   [parameter = value]
   ...
END

The Kramers fitted opacity [29] uses the simple analytic expressions

$$\tau_a = \rho \sigma_a = C_a \rho^{a+1} T^b \gamma^c \tag{72}$$

$$\tau_s = \rho \sigma_s = C_s \rho^{d+1} T^e \gamma^f \tag{73}$$
to calculate the true absorption $\sigma_a$ and scattering $\sigma_s$ mass coefficients (units are area per mass). For multi-group cases, the frequency (actually energy) is set to the lower group bound.

For Kramers fitted opacity, the Rosseland opacity is set equal to the sum of the absorption and scattering opacities.

$$\tau_r = \tau_a + \tau_s \quad (74)$$

- Modules: material\_libs/opac\_models
  - kramers\_fitted.h
  - kramers\_fitted.C

- Physics:
  - emission
  - radiation and all derived physics classes

### Table 31. Input Parameters for KRAMERS FITTED.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAP COEF</td>
<td>real</td>
<td>$C_a$ - Coefficient of true absorption</td>
</tr>
<tr>
<td>KAP RHO EXP</td>
<td>real</td>
<td>$a$ - Density exponent for absorption</td>
</tr>
<tr>
<td>KAP T EXP</td>
<td>real</td>
<td>$b$ - Temperature exponent for absorption</td>
</tr>
<tr>
<td>KAP NU EXP</td>
<td>real</td>
<td>$c$ - Photon energy exponent for absorption</td>
</tr>
<tr>
<td>SIG COEF</td>
<td>real</td>
<td>$C_s$ - Coefficient of scattering</td>
</tr>
<tr>
<td>SIG RHO EXP</td>
<td>real</td>
<td>$d$ - Density exponent for scattering</td>
</tr>
<tr>
<td>SIG T EXP</td>
<td>real</td>
<td>$e$ - Temperature exponent for scattering</td>
</tr>
<tr>
<td>SIG NU EXP</td>
<td>real</td>
<td>$f$ - Photon energy exponent for scattering</td>
</tr>
</tbody>
</table>

For example, free-free absorption and Thompson scattering in a completely ionized plasma could be specified as:

```plaintext
model 1 kramers fitted
 kap coef = 2.22e32
 kap rho exp = 1.0
 kap t exp = -0.5
 kap nu exp = -3.0
```
Table 32. Registered Plot Variables for KRAMERS FITTED.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>Scalar</td>
<td>INPUT</td>
<td>Density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Scalar</td>
<td>INPUT</td>
<td>Temperature</td>
</tr>
<tr>
<td>NU(j)</td>
<td>Scalar</td>
<td>INPUT</td>
<td>Left frequency bound in j-th group</td>
</tr>
<tr>
<td>OLD_DENSITY</td>
<td>Scalar</td>
<td>OUTPUT</td>
<td>Previous density (not used)</td>
</tr>
<tr>
<td>OLD_TEMP</td>
<td>Scalar</td>
<td>OUTPUT</td>
<td>Previous temperature (not used)</td>
</tr>
<tr>
<td>OPACITY_A</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_a$ - Absorption opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
<tr>
<td>OPACITY_R</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_r$ - Rosseland opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
<tr>
<td>OPACITY_S</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_s$ - Scattering opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
</tbody>
</table>

sig coef = 3.99  
sig rho exp = 0.0  
sig t exp = 0.0  
sig nu exp = 0.0

This model is particularly useful for calculations where the opacity in the regime of interest can be approximated reasonably well by the above analytical form and computational speed is desired.

10.6.2 XSN Opacity

MODEL model_id_number XSN
    NUMBER OF ELEMENTS int
        ELEMENT int, MASS real, FRACTION real
    END
    [parameter = value]
    ...  
END

XSN [20, 21, 23] provides frequency-dependent emission and absorption coefficients for a material that may or may not be in LTE (local thermodynamic equilibrium). The model assumes an average ion approximation and can handle the case of multiple elements in a composite material. The XSN package is highly compute intensive compared to other opacity models.

119
In LTE, the required inputs are the mass density $\rho$, the atomic molar fraction $f_a$, and the electron temperature $T_e$.

In non-LTE, additional inputs are needed (see below).

Material composition information listed under the XSN model will override the composition information listed under the MATERIAL model.

- Modules: material/libs/opac/models
  - xsn.h
  - xsn.C
  - xsn_interface.h
  - xsn_interface.C

- Physics:
  - emission
  - radiation and all derived physics classes

Table 33: Input Parameters for XSN.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMONLY USED XSN OPTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER OF ELEMENTS</td>
<td>int</td>
<td>Specification of the atomic composition (optional). XSN will use the composition specified in the MATERIAL keyword block if omitted here, otherwise the XSN will override the MATERIAL specification for this model if present here. (default = 0, maximum = 5)</td>
</tr>
<tr>
<td>ELEMENT int, MASS real,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRACTION real END</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOMIC VOLUME MULTIPLIER</td>
<td>real</td>
<td>Fudge factor for atomic volumes (default = 1.0)</td>
</tr>
<tr>
<td>DYNAMIC INTEGRATION</td>
<td>none</td>
<td>Changes the group bounds to $g_0 = 0.12299T_m$ and $g_f = 11.6088T_m$ and uses these bounds to calculate the opacity. The user must set NUMBER OF GROUPS = 1</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAGEN RUBENS</td>
<td>none</td>
<td>This is NOT an ice cream sandwich with corned beef. Modifies the low photon energy opacities using the value of the electrical conductivity and is recommended primarily for metals [8]. <em>Note! The user must specify the electrical conductivity model before the XSN model in the MATERIAL ... END block of the input deck!</em></td>
</tr>
<tr>
<td>DENSITY CHANGE</td>
<td>real</td>
<td>Fractional density change necessary before recomputing opacities. If the fractional density change, $\Delta \rho/\rho_{old}$, is less than this value, then the old opacity value is used again. $\rho_{old}$ is the density at which the opacity was last computed. (default = 0.0)</td>
</tr>
<tr>
<td>DENSITY FLOOR</td>
<td>real</td>
<td>Minimum density used in a call to XSN (default = 0.0, code units)</td>
</tr>
<tr>
<td>TEMPERATURE CHANGE</td>
<td>real</td>
<td>Fractional temperature change necessary before recomputing opacities. If the fractional temperature change, $\Delta T/T_{old}$, is less than this value, then the old opacity value is used again. $T_{old}$ is the temperature at which the opacity was last computed. (default = 0.0)</td>
</tr>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Minimum temperature used in a call to XSN (default = 0.0, code units)</td>
</tr>
<tr>
<td>COLD OPACITY</td>
<td>real</td>
<td>Value of the cold opacity to be used below the COLD OPACITY THRESHOLD temperature. This option allows the user to specify an opacity value at lower temperatures where XSN may not compute accurate values, and when the HAGEN RUBENS option is not usable. The same value is used for both the Planck and Rosseland opacities. <em>The user must set NUMBER OF GROUPS = 1</em> (default = 0.0, code units, i.e., $\frac{1}{\text{length}}$)</td>
</tr>
<tr>
<td>COLD OPACITY THRESHOLD</td>
<td>real</td>
<td>Temperature value below which the COLD OPACITY will be used. (default = 0.0, code units)</td>
</tr>
</tbody>
</table>
**Other XSN Options**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BOUND BOUND MULTIPLIER</strong></td>
<td>real</td>
<td>Fudge factor for bound-bound opacity (default = 1.0)</td>
</tr>
<tr>
<td><strong>CONTINUUM LOWERING MULTIPLIER</strong></td>
<td>real</td>
<td>Fudge factor for continuum lowering (default = 1.0)</td>
</tr>
<tr>
<td><strong>CONTINUUM LOWERING TYPE</strong></td>
<td>int</td>
<td>Continuum lowering model to use:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = use no continuum lowering (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = ion-sphere model</td>
</tr>
<tr>
<td><strong>DOPPLER WIDTH OPTION</strong></td>
<td>int</td>
<td>Use Doppler line width model (default = 0)</td>
</tr>
<tr>
<td><strong>ENERGY LEVEL TYPE</strong></td>
<td>int</td>
<td>Energy level model to use:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Bohr with Pauli corrections (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Dirac energy levels</td>
</tr>
<tr>
<td><strong>FREE BOUND MULTIPLIER</strong></td>
<td>real</td>
<td>Fudge factor for free-bound emission (default = 1.0)</td>
</tr>
<tr>
<td><strong>LINE OPTION</strong></td>
<td>int</td>
<td>(default = 0)</td>
</tr>
<tr>
<td><strong>LINE WIDTH MULTIPLIER</strong></td>
<td>real</td>
<td>Fudge factor for line widths (default = 1.0)</td>
</tr>
<tr>
<td><strong>MINIMUM NUCLEAR Z</strong></td>
<td>real</td>
<td>(default = 10.0)</td>
</tr>
<tr>
<td><strong>MAXIMUM DENSITY</strong></td>
<td>real</td>
<td>Cutoff density for bound-bound opacity fudge factor (default = 100.0)</td>
</tr>
<tr>
<td><strong>NUMBER OF LEVELS</strong></td>
<td>int</td>
<td>(default = 7, maximum = 10)</td>
</tr>
<tr>
<td><strong>NUMBER OF SUBGROUPS PER GROUP</strong></td>
<td>int</td>
<td>(default = 100, maximum = 560)</td>
</tr>
<tr>
<td><strong>OPACITY AVG LIMIT</strong></td>
<td>int</td>
<td>(default = 1)</td>
</tr>
<tr>
<td><strong>PLANCK OPACITY OPTION</strong></td>
<td>int</td>
<td>(default = 1)</td>
</tr>
<tr>
<td><strong>STRAIGHT OPACITY AVERAGE</strong></td>
<td>int</td>
<td>(default = 1)</td>
</tr>
<tr>
<td><strong>TWO BAND OPTION</strong></td>
<td>int</td>
<td>(default = 0)</td>
</tr>
<tr>
<td><strong>EXTRA ELECTRONS PER NUCLEUS</strong></td>
<td>real</td>
<td>(default = 0.0)</td>
</tr>
<tr>
<td><strong>EXTRA Z Squared PER NUCLEUS</strong></td>
<td>real</td>
<td>(default = 0.0)</td>
</tr>
<tr>
<td><strong>OPACITY MULTIPLIER</strong></td>
<td>real</td>
<td>Multiplies all groups by a single constant (default=1.0)</td>
</tr>
</tbody>
</table>

**Dynamic Integration** uses the fact that 99% of the energy in the black body function is within the bounds of $0.12299 \, T < T < 11.6088 \, T$. When calculating the opacities in XSN, there are a maximum of only 100 integration points, and this is an attempt to ensure a greater probability of having those points land on transition lines. This is especially true for lower temperatures where the black body function is very narrow.
Table 34. Registered Plot Variables for XSN.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>Scalar</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Scalar</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>OLD_DENSITY</td>
<td>Scalar</td>
<td>OUTPUT</td>
<td>Old density</td>
</tr>
<tr>
<td>OLD_TEMP</td>
<td>Scalar</td>
<td>OUTPUT</td>
<td>Old temperature</td>
</tr>
<tr>
<td>OPACITY_A</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_a$ - Absorption opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
<tr>
<td>OPACITY_R</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_r$ - Rosseland opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
<tr>
<td>OPACITY_S</td>
<td>Opacity</td>
<td>OUTPUT</td>
<td>$\tau_s$ - Scattering opacity - units of $\frac{1}{\text{length}}$</td>
</tr>
</tbody>
</table>

For example,

```
material 1 DDGAS
 ...
 model = 14
end

model 14 xsn $ DD-GAS
 number of elements 1
 element 1, mass 2.0, fraction 1.0
end
end

material 3 CH
 ...
 model = 36
end

model 36 xsn $ CH + 5% O + 0.25% Br
 number of elements 4
 element 1, mass 1.0079, fraction 0.47375
 element 6, mass 12.0110, fraction 0.47375
 element 8, mass 15.9994, fraction 0.05
 element 35, mass 79.9040, fraction 0.0025
end
end
```
10.7 Ionization Models

10.7.1 Saha Ionization

The Saha IONIZATION model [29] solves for the relative abundance of nuclei in adjacent charge states and for the average ionization state, $\bar{Z}$, of a hot material. This model obtains its necessary information from the NUMBER OF ELEMENTS ... END block of the MATERIAL specification.

The ionization state is found by solving a nonlinear set of equations relating the fractional number of ions in each ionization state.

\[
\frac{\alpha_{m+1}\alpha_e}{\alpha_m} = C_{Saha} \left( \frac{A}{\rho} \right) \left( \frac{u_{m+1}}{u_m} \right) \left( T^{3/2} \right) \exp \left( -\frac{I_{m+1}}{T} \right) \quad (75)
\]

\[
1 = \sum_{m=0}^{Z} \alpha_m \quad \text{and} \quad \alpha_e = \sum_{m=0}^{Z} m\alpha_m \quad (76)
\]

where $\alpha_m = N_m/N$ represents the fraction of ions in the $m^{th}$ charge state and $N = \rho N_A/A$ is the number density of nuclei. $N_m$ represents the number density of nuclei in the $m^{th}$ charge state. $\alpha_e = N_e/N$ represents the ratio of free electrons to nuclei and also the average ionization state, $\bar{Z}$. $A$ is the atomic mass, $\rho$ is the density in g/cm$^3$, $u_m$ is essentially the electronic partition function (assumed to be equal to the statistical weight of the statistical weight of the ground state, i.e., 2 for the two electron spin states), $T$ is the temperature in keV, and $I_m$ is the ionization potential of the $m^{th}$ charge state also in keV.

\[
C_{Saha} = \frac{2}{N_A} \left( \frac{2\pi m_e k_B}{h^2} \right)^{3/2} = 317.013 \quad (77)
\]

where $N_A$ is the Avogadro’s number, $m_e$ is the electron mass, $h$ is Planck’s constant, and $k_B$ is essentially Boltzmann’s constant converting the temperature from keV to ergs.
• Modules: material_libs/ec
  – matmod_saha.h
  – matmod_saha.C
  – saha_equation.F

• Physics: any physics requiring ionized materials

### Table 35. Input Parameters for SAHA IONIZATION.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE CUTOFF</td>
<td>real</td>
<td>Minimum temperature used to evaluate the ionization state</td>
</tr>
</tbody>
</table>

### Table 36. Registered Plot Variables of SAHA IONIZATION.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ZBAR</td>
<td>real</td>
<td>OUTPUT</td>
<td>Ionization state</td>
</tr>
</tbody>
</table>

Example:

model, 5, saha ionization
$ no parameters necessary
end

### 10.7.2 KZB Sesame Ionization

MODEL model_id_number KZB SESAME
  [parameter = value]
  ...
END

Ionization state as found in tabular form in Kerley Sesame format [11]. Internally this is the 601 Sesame table. This is not really a model. It is a software interface. The origins of any table used here must be carefully researched and understood.
• Modules: material_libs/kerley_eos/sesame
  – szb_mig.h
  – szb_mig.C
  – szbmig.F

• Physics: any physics requiring ionized materials

Table 37. Input Parameters for KZB SESAME.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZB</td>
<td>String</td>
<td>Table file name</td>
</tr>
<tr>
<td>NZB</td>
<td>int</td>
<td>Table Number</td>
</tr>
</tbody>
</table>

Table 38. Registered Plot Variables of KZB SESAME.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Type</th>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY</td>
<td>real</td>
<td>INPUT</td>
<td>Material density</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>real</td>
<td>INPUT</td>
<td>Material temperature</td>
</tr>
<tr>
<td>ZBAR</td>
<td>real</td>
<td>OUTPUT</td>
<td>Ionization state</td>
</tr>
</tbody>
</table>

Example:

```plaintext
model, 5, kzb sesame
 fzb = 'ses600'
nzb = 3109
end
```
11 Diagnostics

11.1 Global Diagnostic Variables

In many problems of interest it is often desirable to know the energy budget. How much energy is related to a given physical process? What are the values of the kinetic, internal, magnetic, and radiation energies? How much energy is supplied by a given source or is lost to a given sink? How fast does energy change from one form to another? A global energy balance can be constructed as follows.

\[ E_{error}(t) = E_{tot}(t) - [E_{tot}(0) + E_{sources}(t) - E_{losses}(t)] = 0 \]  

where

\[ E_{tot}(t) = E_{int}(t) + E_{kin}(t) + E_{mag}(t) \]

Ideally the error in this energy balance should be zero, or at least small compared to most energy tallies. Deviations from zero are typically due to missing energy tallies, numerical inaccuracies, or perhaps too large of a time step.

Table 39. Global Tallies for All Physics Options.

<table>
<thead>
<tr>
<th>Global Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETOT</td>
<td>Total of the kinetic internal, magnetic, and radiation energies and the rate of total energy change.</td>
</tr>
<tr>
<td>PTOT*</td>
<td></td>
</tr>
</tbody>
</table>

Table 40: Global Tallies for TRANSIENT MAGNETICS.

<table>
<thead>
<tr>
<th>Global Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT_MAG</td>
<td>Overall limiting time step for TRANSIENT MAGNETICS</td>
</tr>
<tr>
<td>DT_MAGDIFF</td>
<td>Suggested limiting time step for resolving magnetic diffusion. It is essentially one e-folding time for problems where the magnetic field varies exponentially in time. In SI units, ( \tau_{magdiff} = (\mu \sigma h^2)/4 ), where ( \mu ) is the permeability, ( \sigma ) is the conductivity, and ( h ) is a characteristic cell size.</td>
</tr>
<tr>
<td>DT_ALFVEN</td>
<td>Limiting time step based upon Alfvén wave speed.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>Current flowing in the mesh as tallied by the CURRENT TALLY boundary conditions. Present only if CURRENT TALLY commands are specified.</td>
</tr>
</tbody>
</table>

continued on next page
INDUCTANCE

Inductance of the mesh computed from the total magnetic field energy, \( EMAG \), and the total \( CURRENT \) tally. Present only if \( CURRENT TALLY \) boundary conditions are specified. In SI units, \( \frac{1}{2}LJ^2 = E_{mag} = \frac{1}{\mu_0} \int B^2 dV \).

RESISTANCE

Resistance of the mesh computed from the total joule heating rate, \( PJOULE \), and the total \( CURRENT \) tally. Present only if \( CURRENT TALLY \) boundary conditions are specified. In SI units, \( R I^2 = P_{joule} = \int \eta J^2 dV \).

EMAG

Magnetic field energy and rate of change.

PMAG

Rate of change of magnetic field energy.

EJOULE

Cumulative tally of the energy transferred to the material via Joule heating and rate of heating.

PJOULE

Rate of heating.

EJOUULV

Cumulative tally of the energy transferred to the void via Joule heating and rate of heating as a consequence of small, but finite, void conductivities. This energy and power should be small compared to other energies and powers for a valid solution.

PJOUULV

Rate of heating.

EUDJXB

Cumulative tally of the energy transferred to the material via work done by \( J \times \vec{B} \) forces and rate of change.

PUDJXB

Rate of change of energy transferred to the material via work done by \( J \times \vec{B} \) forces.

EMAGHYDRO

Cumulative tally of the change in magnetic field energy due to Lagrangian motion of the mesh and rate of change. (2D only)

PMAGHYDRO

Rate of change of magnetic field energy due to Lagrangian motion of the mesh.

EMAGWORK

Cumulative tally of the energy transferred to the material via work done by forces and rate of change. Typically these tallies equal the sum of the \( EUDJXB \) and \( EMAGHYDRO \) tallies (2D only)

PMAGWORK

Rate of change of energy transferred to the material via work done by forces.

EPOYNT

Cumulative tally of the energy transferred to the system via Poynting flux through the boundary of the mesh and rate of change. Since this tally typically represents a source of energy, it should be added to the energy balance equation. This tally is positive if energy is added to the mesh and negative if energy is lost from the mesh.

PPOYNT

Rate of change of energy transferred to the system via Poynting flux.

ETDERR

Time discretization energy and rate of change. This energy error originates naturally when constructing the fully-implicit numerical algorithm used to solve the MHD equations. It should be small compared to other energies and powers for a valid solution. (2D only)

PTDERR

Rate of change of time discretization energy.
Table 41 explains the key to decipher the output names for the circuit model as it is implemented. All circuit output variables are in SI units even though the circuit model may be used with a simulation that is in either SI or CGS units. Circuit model output names are composed of three parts: a prefix, a root, and a suffix. The root part designates the type of circuit component, either a circuit node or a circuit element. The prefix indicates the type of information represented by the tally. The suffix identifies the particular circuit node or circuit element for the tally.

The "I_" current tallies are associated with circuit elements. Circuit elements are attached to circuit nodes. The sum of all currents coming into a circuit node should be zero (unless it is a voltage source or ground node). Kirchhoff’s law for currents is enforced. If a circuit node is attached to the output of a circuit element, then the element current is added to the sum. If a circuit node is attached to the input of a circuit element, then the element current is subtracted from the sum. Any discrepancies in the sum are stored in the "IG_NODE_" variables, nominally referred to as a "current to ground." These "IG_NODE_" variables can indicate a bad DASPK solve if they are not small compared to other currents. Ideally they would be zero.

The "V_" voltage tallies are associated with circuit nodes. The difference in voltages between two adjacent circuit nodes should match the corresponding "DV_" tally for the circuit element that connects the nodes. Kirchhoff’s law for zero voltage drop around a closed loop is enforced in this piecewise manner.

The "E_" energy variables are the energy stored in circuit elements in the case of capacitors and inductors, the energy dissipated in the case of resistors, and the Poynting energy in the case of the mesh circuit element.

The "MQSMESH_" variables and the circuit solution depend upon the correctness of any symmetry factors should they be required, i.e., the VOLUMETRIC SCALE FACTOR input keyword.

External inductances, resistances, and capacitances are typically constants.

For example, the MQS element having an input node 2 and an output node 1 representing the mesh has the following variables present in the EXODUS and HISPLT output files: DV_MQSMESH_2_1, I_MQSMESH_2_1, E_MQSMESH_2_1, L_MQSMESH_2_1, and R_MQSMESH_2_1.
Table 41: Global Tallies for CIRCUIT SOLVER.

<table>
<thead>
<tr>
<th>Global Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prefix</strong></td>
<td></td>
</tr>
<tr>
<td>V_</td>
<td>Circuit node voltage (Volts).</td>
</tr>
<tr>
<td>IG_</td>
<td>Circuit node current to ground (Amperes).</td>
</tr>
<tr>
<td>I_</td>
<td>Circuit element current (Amperes).</td>
</tr>
<tr>
<td>L_</td>
<td>Circuit element inductance (Henrys).</td>
</tr>
<tr>
<td>R_</td>
<td>Circuit element resistance (Ohms).</td>
</tr>
<tr>
<td>E_</td>
<td>Circuit element energy (Joules).</td>
</tr>
<tr>
<td>DV_</td>
<td>Circuit element voltage drop between input and output nodes (Volts).</td>
</tr>
<tr>
<td><strong>Root</strong></td>
<td></td>
</tr>
<tr>
<td><em>NODE</em></td>
<td>Circuit node.</td>
</tr>
<tr>
<td><em>MQSMESH</em></td>
<td>Mesh element (MQS = magnetoquasistatics).</td>
</tr>
<tr>
<td><em>RES</em></td>
<td>Resistor element.</td>
</tr>
<tr>
<td><em>IND</em></td>
<td>Inductor element.</td>
</tr>
<tr>
<td><em>CAP</em></td>
<td>Capacitor element.</td>
</tr>
<tr>
<td><em>ZFLOW</em></td>
<td>Zflow resistor element.</td>
</tr>
<tr>
<td><em>CS</em></td>
<td>Current source element.</td>
</tr>
<tr>
<td><em>DET</em></td>
<td>Detonator resistor element.</td>
</tr>
<tr>
<td><em>SW</em></td>
<td>Switch resistor element.</td>
</tr>
<tr>
<td><em>TSW</em></td>
<td>Tracer switch element.</td>
</tr>
<tr>
<td><em>VAR</em></td>
<td>Varistor resistor element.</td>
</tr>
<tr>
<td><strong>Suffix</strong></td>
<td></td>
</tr>
<tr>
<td>_nn</td>
<td>Node identifier.</td>
</tr>
<tr>
<td>_ii_oo</td>
<td>Element identifier (ii = input node, oo = output node).</td>
</tr>
</tbody>
</table>

Table 42. Global Tallies for THERMAL CONDUCTION.

<table>
<thead>
<tr>
<th>Global Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT_CON</td>
<td>Overall limiting time step for THERMAL CONDUCTION. The reported time step does not include scaling by the TIME STEP SCALE keyword so the user may readily see the time step that thermal conduction would normally employ.</td>
</tr>
</tbody>
</table>
Table 43. Global Tallies for EMISSION.

<table>
<thead>
<tr>
<th>Global Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT_EMISSION</td>
<td>Limiting time step for EMISSION. This time step is factored into the DT_HYDRO time step.</td>
</tr>
<tr>
<td>ERADEMIT</td>
<td>Cumulative tally of the radiation energy emitted by the material and the rate of emission due to the EMISSION model. Since this tally represents a gain to the radiation energy, it should be added to the initial radiation energy in energy balance equations.</td>
</tr>
<tr>
<td>PRADEMIT*</td>
<td></td>
</tr>
<tr>
<td>DIST_TO_VOID</td>
<td>A report of the mean-distance-to-void used to compute the reabsorption factor in the emission model.</td>
</tr>
<tr>
<td>OPTICAL_DEPTH_MIN</td>
<td>A report of the minimum and maximum optical depth used to compute the reabsorption factor in the emission model. The optical depth is defined to be the absorption opacity times the mean-distance-to-void.</td>
</tr>
<tr>
<td>OPTICAL_DEPTH_MAX</td>
<td></td>
</tr>
</tbody>
</table>
References


    report SAND2001-8028, Sandia National Laboratories, Albuquerque, NM 87185, 
    December 2000.

    SAND99-8801J, Sandia National Laboratories, Albuquerque, NM 87185, November 
    1999.

[29] Y. B. Zel’dovich and Y. P. Razier. Physics of Shock Waves and High-Temperature 
Index

A REZONE, 40
ALFVEN DENSITY FLOOR, 39
ALFVEN VELOCITY MAXIMUM, 39
ALPHA, 40
AUTOSTEP, 37, 38
AZTEC, 27, 75, 88
AZTEC SET, 27, 40, 75
B MAG GRADIENT TRIGGER, 26
B MAG GRADIENT WEIGHT, 26
B MAG TRIGGER, 26
B MAG WEIGHT, 26
BISECT, 80, 86
BLACKBODY, 79
BLOCK, 26, 94
BREMSSTRAHLUNG, 80
CENTERLINE BC, 57
CGS, 18, 67
CGSEV, 18
CIRCUIT, 49, 53, 56
CIRCUIT ELEMENT, 70
CIRCUIT NODE, 69
CIRCUIT SOLVER, 37, 68, 129
comments ( $ ), 17
CONSERVE MEMORY, 42, 75
CONSISTENT, 18
CONSTANT THERMAL CONDUCTIVITY, 112
CURRENT, 73, 127
CURRENT DENSITY, 43
CURRENT TALLY, 72, 127
CYLINDRICAL AXIAL SLOT BC, 48, 56
CYLINDRICAL RADIAL SLOT BC, 52, 56, 61
delimiters, 17
DELTA TIME, 37
   AUTOSTEP, 37
   FIXED, 37
   MAGNETIC DIFFUSION, 37
DENSITY FLOOR, 30
   ALFVEN, 39
   ELECTRICAL CONDUCTIVITY, 45
   HYDRO FORCE, 30
   JOULE HEAT, 44
   LORENTZ FORCE, 31
   THERMAL CONDUCTIVITY, 76
   DIFFUSE INITIAL FIELD, 58
   DT_ALFVEN, 38, 127
   DT_CON, 75, 130
   DT_EMIS, 86, 131
   DT_HYDRO, 131
   DT_MAG, 37, 127
   DT_MAGDIFF, 38, 127
   DYNAMICS, 24
   E NORMAL RETURN CURRENT BC, 55
   E TANGENT BC, 47, 69
   EC ANOMALOUS, 108
   EC KNOEPFEL, 109
   ELECTRICAL CONDUCTIVITY DENSITY FLOOR, 45
electrical conductivity models
   EC ANOMALOUS, 108
   EC KNOEPFEL, 109
   KEC SESAME, 110
   LMD, 97
   SPITZER, 104
EMISSION, 22, 25, 78, 130
EMISSION ENERGY FLOOR, 83
EMISSION MULTIPLIER, 81
ENERGETICS, 24
EULERIAN, 26
EXODUS, 72
FIFE, 36
FIFE R SCALED, 21, 36
FIXED, 37
FORMULATION, 36
   FIFE, 36
   FIFE R SCALED, 36
GAUSSIAN, 18
GROUP BOUNDS, 81
HISPLT, 72
HYDRO FORCE DENSITY FLOOR, 30
HYDRODYNAMICS, 24, 30
HYDRODYNAMICS CONDUCTION, 24
IN, 72
OUT, 72
INDUCTANCE, 73, 128
thermal conductivity models
  CONSTANT, 112
  KTC SESAME, 115
  LMD, 97
  PLASMA, 113
  POLYNOMIAL, 114
  SPITZER, 104
TIME STEP SCALE, 74, 130
TOLERANCE, 87
TRANSIENT MAGNETICS, 21, 24, 33, 34, 88, 89, 97, 127

UNIFORM H BC, 46, 56
UNITS, 18, 34, 35
  CGS, 18, 59
  CGSEV, 18
  CONSISTENT, 18
  GAUSSIAN, 18, 59
  SI, 18, 59

VOID CONDUCTIVITY, 44–46, 76
  and insulators, 44, 46
VOID RELUCTIVITY, 46
VOLUMETRIC SCALE FACTOR, 56, 72, 129

XSN, 119
DISTRIBUTION:

1 Doney, Bobby
U.S. Army Research Lab
AMSRL-WT-TA
Aberdeen Proving Ground, MD
21005-5066

1 Fermen-Coker, M.
U.S. Army Research Lab
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Filbey, Gordon L., Jr.
U.S. Army Research Lab
AMSRL-WT-TA
Aberdeen Proving Ground, MD
21005-5066

1 Kimsey, Kent D.
U.S. Army Research Lab
AMSRL-WT-TC
Aberdeen Proving Ground, MD
21005-5066

1 Kingman, Pat
U.S. Army Research Lab
AMSRL-WT-TD
Aberdeen Proving Ground, MD
21005-5066

1 Schraml, Stephan J.
U.S. Army Research Lab
AMSRL-WM-TD
Aberdeen Proving Ground, MD
21005-5066

1 Musk, LTC Jeffrey H.
Department of Physics
MADN-PHYS
Building 753, Bartlett Hall
U.S. Military Academy
West Point, NY 10996-1790

1 MS 0370
T. G. Trucano, 9211

1 MS 0370
A. V. Farnsworth, Jr., 9232

1 MS 0378
W. J. Bohnhoff, 9231

5 MS 0378
S. Carroll, 9231

1 MS 0378
M. A. Christon, 9231

1 MS 0378
R. R. Drake, 9231

1 MS 0378
D. M. Hensinger, 9231

1 MS 0378
D. A. Labreche, 9231

1 MS 0378
C. B. Luchini, 9231

1 MS 0378
S. J. Mosso, 9231

1 MS 0378
S. V. Petney, 9231

5 MS 0378
A. C. Robinson, 9231

1 MS 0378
J. Robbins, 9231

1 MS 0378
R. M. Summers, 9231
<table>
<thead>
<tr>
<th>MS 0378</th>
<th>T. E. Voth, 9231</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 0378</td>
<td>M. K. Wong, 9231</td>
</tr>
<tr>
<td>MS 1110</td>
<td>P. B. Bochev, 9214</td>
</tr>
<tr>
<td>MS 1152</td>
<td>S. J. Chantrenne, 1642</td>
</tr>
<tr>
<td>MS 1168</td>
<td>C. Deeney, 1646</td>
</tr>
<tr>
<td>MS 1181</td>
<td>J. P. Davis, 1646</td>
</tr>
<tr>
<td>MS 1186</td>
<td>T. A. Brunner, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>R. B. Campbell, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>P. J. Christenson, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>K. R. Cochrane, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>M. P. Desjarlais, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>C. J. Garasi, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>T. A. Haill, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>R. J. Lawrence, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>R. W. Lemke, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>T. K. Mattsson, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>T. A. Mehlhorn, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>B. V. Oliver, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>K. Peterson, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>S. A. Slutz, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>R. A. Vesey, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>E. C. Wemlinger, 1674</td>
</tr>
<tr>
<td>MS 1186</td>
<td>E. P. Yu, 1674</td>
</tr>
<tr>
<td>MS 1190</td>
<td>J. P. Quintenz, 1600</td>
</tr>
<tr>
<td>MS 1191</td>
<td>M. K. Matzen, 1670</td>
</tr>
<tr>
<td>MS 1191</td>
<td>M. A. Sweeney, 1670</td>
</tr>
<tr>
<td>MS 1194</td>
<td>S. E. Rosenthal, 1644</td>
</tr>
<tr>
<td>MS 1194</td>
<td>E. M. Waisman, 1644</td>
</tr>
<tr>
<td></td>
<td>MS 1452</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>MS 9051</td>
</tr>
<tr>
<td>1</td>
<td>MS 9159</td>
</tr>
<tr>
<td>1</td>
<td>MS 9159</td>
</tr>
<tr>
<td>2</td>
<td>MS 0899</td>
</tr>
<tr>
<td>1</td>
<td>MS 9018</td>
</tr>
</tbody>
</table>