Dependable Software through Higher-order Strategic Programming

Victor Winter
Sandia Contract No. 5137
University of Nebraska at Omaha

Steve Roach
University of Texas at El Paso

Fares Fraij
University of Texas at El Paso

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Program transformation is a restricted form of software construction that can be amenable to formal verification. When successful, the nature of the evidence provided by such a verification is considered strong and can constitute a major component of an argument that a high-consequence or safety-critical system meets its dependability requirements.

This article explores the application of novel higher-order strategic programming techniques to the development of a portion of a class loader for a restricted implementation of the Java Virtual Machine (JVM). The implementation is called the SSP and is intended for use in high-consequence safety-critical embedded systems. Verification of the strategic program using ACL2 is also discussed.
Contents

1 Introduction 7
 1.1 Impact of Transformation on Dependable Software Construction 7
 1.2 Contribution 7

2 Background 8
 2.1 Equational Reasoning: The Foundation of Transformation 8
 2.2 Strategic Programming 9
 2.3 The Distributed Data Problem 10

3 An Overview of TL 10
 3.1 Terms and Trees 11
 3.2 Match Equations and Match Expressions 11
 3.3 Rewriting in TL 12
 3.4 The Basics of TL 13
 3.5 Higher-Order Strategies in TL 14
 3.6 TL’s transient Combinator 16

4 A Class Loader for Java 17
 4.1 Method Table Requirements for the SSP 17
 4.2 An Example of Method Table Construction 18
 4.3 Constructing SSP Method Tables in TL 20

5 Assurance 23

6 Related Work 25

7 Conclusion 26

List of Figures

1 A Simple Equational Theory 8
2 A source-to-source optimization 8
3 Grammar fragment for a simplified Java class file 11
4 The parse trees corresponding to classfile[{class1 super1 methods1}] and classfile[[{id1 id2 methods1}]] 12
5 The semantics of sigma distribution 12
6 The primitive constructs, combinators and constants of TL 14
7 Some basic first-order traversals of TL 14
8 Diagram of a tdl-broadcast traversal from the perspective of strategy application 15
9 Diagram of a tdl traversal from the perspective of strategy application 15
10 A small abstract grammar 16
Nomenclature

ACL2 A Computational Logic in Applicative Common Lisp
BNF Backus-Naur Form
HATS High Assurance Transformation System
JVM Java Virtual Machine
ROM Read Only Memory
SSP Sandia Secure Processor
TL Transformation Language – a higher-order strategic programming language

1 Introduction

The manipulation of software artifacts such as specifications and program source code through rewriting is an active area of research [3][5][7][13][14][23][27][24][30]. Driving this research is the idea that the repeated application of a set of simple rewrite rules can effect a major change in a software artifact. Within the scope of this article we will use the term program transformation (or transformation) in a general sense to refer to software manipulation processes that are restricted to the fully automatic application of rewrite rules. We will also predominantly refer to the objects that are the subject of transformation as terms rather than specifications, programs, code fragments, or other artifacts.

1.1 Impact of Transformation on Dependable Software Construction

Theoretically speaking, the use of transformation for the manipulation of software artifacts can span the entire software life cycle from the derivation of implementations from formal specifications to software maintenance and reverse engineering. From a practical perspective, the automatic application of rewrite rules to alter programs provides the foundation for scaling transformation-based software development methods to large systems. From the perspective of dependability, the explicit nature of transformation exposes the software development process to various forms of analysis that would otherwise not be possible. In contrast to the “programmer at the terminal” software development paradigm where the thinking process of the programmer is not explicit, the development of software through transformation is a repeatable process in the sense that a third party can replay the transformation sequence used to develop the software. The notion that the rewrite rules used within a transformation should be “simple” also provides hope that formal verification efforts could succeed in proving that the rules that are applied during the course of a transformation preserve correctness. When successful, the nature of the evidence provided by such a formal verification is considered strong and can constitute a major component of an argument that a high-consequence or safety-critical system meets its dependability requirements.

1.2 Contribution

This paper explores the novel use of higher-order strategic programming techniques available in the strategic programming language TL [29] to the development of a portion of a class loader for a hardware implementation of the Java Virtual Machine (JVM). The implementation under consideration is the Sandia Secure Processor (SSP) developed at Sandia National Laboratories for use in high-consequence safety-critical systems. In this article, we will take an in-depth look at how TL’s novel higher-order strategies, traversals, and transient combinator can be used to construct the method tables required by the SSP. We also provide a sketch of how such strategies might be verified using ACL2. We believe that the abstractions provided by TL’s higher-order strategies positively impact the ability of an automated verification system such as ACL2 to successfully prove the correctness of a variety of strategic programs, thereby contributing to the development of dependable software systems.

The remainder of the paper is as follows: Section 2 provides background on program transformation. Section 3 gives an overview of the higher-order strategic programming language TL. Section 4 briefly describes the SSP and gives a detailed discussion of how method tables for the SSP can be constructed.
in TL. Section ?? briefly describes a transformation system we are developing that supports a restricted dialect of TL. All problems mentioned and presented in this article have been implemented in TL. Section 5 describes our research in verification. Section 6 describes related work in the areas of strategic programming and transformation verification, and Section 7 concludes.

2 Background

This section provides the background on program transformation. We briefly discuss why transformation is considered promising in the context of dependable software development as well as some fundamental problems one faces when using this paradigm.

2.1 Equational Reasoning: The Foundation of Transformation

Equational reasoning lies at the heart of transformation-based software development. An equational theory is a set of equations that contain the knowledge necessary to realize a desired transformational objective. The knowledge embodied in an equational theory can capture a wide variety of properties about software artifacts and application domains including (1) relationships between domain-specific data types and implementation-specific data types, (2) general relationships between specification-level and implementation-level constructs, and (3) source-to-source equivalences such as optimizations.

Figure 1 is an example of a simple equational theory consisting of equalities derived from the formal semantics of a typical imperative programming language. The equalities of this equational theory can be used to perform the transformation (denoted by the symbol ⇒) shown in Figure 2.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>while (false) do block = skip</td>
<td>while (false) do block = skip</td>
</tr>
<tr>
<td>skip ; statement = statement</td>
<td>skip ; statement = statement</td>
</tr>
<tr>
<td>id < id = false</td>
<td>id < id = false</td>
</tr>
</tbody>
</table>

Figure 1: A Simple Equational Theory

When using equational theories as the basis of transformation, a problem that must be solved is that of controlling the application of equations in order to realize a given objective. We refer to this problem as the control problem. Ideally, one would like the control problem to be solved automatically (e.g., by the searching capabilities of the computer). In such an approach, the computer would continue to apply equational reasoning steps until the given transformational objective has been reached. Unfortunately,
such an approach is in general undecidable. Rewriting systems address this problem by providing restrictions on the application of equational reasoning steps that, under the right conditions, result in a set of rules for which the control problem is decidable [1]. The basic idea behind rewriting is to orient equalities so that (1) equational reasoning steps (i.e., the substitution of equals for equals) can only be applied in one direction and (2) the resulting rule set is confluent, that is, the order of application of the equations does not affect the final result. This restriction on the direction of equational reasoning is expressed by replacing the symmetric equality relation = with the anti-symmetric rewrite relation \rightarrow. For example, the equation $s = t$ states that the terms s and t may be freely substituted in place of one another. In contrast, the rewrite rule $s \rightarrow t$ states that s may be replaced by t, but it does not specify that t may be replaced by s.

In a rewriting framework, the difficulties associated with the control problem are shifted to the problem of properly orienting equalities within an equational theory and producing rule sets that are confluent. Another desirable property of a rule set is that it is terminating, meaning that the rewriting process is guaranteed to stop. If a rule set can be shown to be both confluent and terminating, then the exhaustive application of rules in any order will always yield the same result, also known as a normal form. Under these conditions, the solution to the control problem becomes trivial.

2.2 Strategic Programming

Unfortunately, the manipulation of software artifacts generally gives rise to rule sets that are not and cannot be made terminating or confluent. One approach for dealing with such rule sets is to introduce additional function symbols into the term language for the explicit purpose of controlling the application of rewrite rules. This approach yields sets of rewrite rules that are not very reusable and is met with considerable resistance when dealing with the scale and complexity found in real-world languages [5]. In an alternate approach called strategic programming [14], the control problem is solved by making explicit a number of combinators capable of specifying both which rewrite rules should be applied to a given term as well as to which sub-terms a rewrite rule should be applied. These combinators can be used together with rewrite rules to form expressions called strategies. In this context, rewrite rules themselves are also referred to as strategies.

The most common combinators controlling which rules should be applied to a given term are those that enable the sequential or conditional composition of rewrite rules to be expressed. Let $(s)t$ be the term resulting from the application of strategy s to term t. A semi-colon is used to denote the sequential composition combinator, and the symbol $<+$ is used to denote the left-biased choice combinator. For example, the strategic expression $s_1; s_2$ denotes the sequential composition of the strategy s_1 and s_2. Its evaluation will first apply s_1 to t followed by the application of s_2. Similarly, the strategy $s_1 <+ s_2$ denotes the left-biased composition of s_1 and s_2. The expression $(s_1 <+ s_2)t$ will apply s_1 to t, and if this application is successful the resulting term will be returned, otherwise s_2 will be applied to t and its result returned.

Traversals are strategies that specify where rules should be applied within a term structure. Specifically, traversals define which sub-terms in a term should be visited as well as the order in which sub-terms are visited. A generic traversal is a general purpose traversal that can be applied to an arbitrary term structure. Though the names may vary between strategic systems, classic examples of generic traversals include TDL, which traverses a term structure in a top-down left-to-right fashion (i.e., outside-in),
and BUL, which traverses a structure in a bottom-up left-to-right fashion (i.e., inside-out). Generic traversals such as TDL and BUL are parameterized on other strategies. For example, if \(s \) denotes a strategy (e.g., a rewrite rule) developed for a particular problem domain, then the expression \(TDL(s)t \) will traverse \(t \) in a top-down left-to-right fashion and attempt to apply \(s \) to every term encountered.

2.3 The Distributed Data Problem

Rewrite rules and strategies are highly effective at manipulating a software artifact when the information necessary for the manipulation can be captured via standard matching or unification. Unfortunately, transformational objectives often require the manipulation of non-local information. For example, the type of a declared variable might need to be distributed to all the places where that variable occurs within a program. Similarly, in order to rename a variable, a unique \(id \) is generated and this \(id \) must then replace all occurrences of the original variable in the program. In Winter [29], this kind of non-localized data exchange between terms has been characterized and is referred to as the distributed data problem.

Most strategic systems in use today are first-order: rewrite rules may only be applied to terms, and the successful application of a rewrite rule to a term yields another term. In these systems the application of a rewrite rule to a term may not yield another rewrite rule. In a first-order setting, a combination of data accumulation and parameter passing is the standard approach taken to solve the distributed data problem. This typically involves the creation of auxiliary structures such as lists to store data that is to be distributed as well as accompanying lookup functions to extract data from such lists. Strategy parameterization is used as the mechanism by which these lists are distributed to the appropriate parts of a term.

In this paper we describe a novel solution to the distributed data problem that is based on higher-order strategies. The idea is to accumulate data in the form of a strategy rather than an auxiliary structure such as a list. This conceptual shift is motivated by the observation that strategy application is a primitive operation in a strategic framework, as are the combinators used to construct such strategies. The use of lists, lookups, and parameterization can be subsumed by dynamic strategy creation and application. As a result, such higher-order strategies provide an elegant technique for solving instances of the distributed data problem.

We have developed and implemented a higher-order strategic language called TL [29], which we are using to explore the implications of higher-order strategies on software development. We have also developed an IDE for strategic programming called HATS that is based on TL. HATS [10] is platform independent and freely available. All examples presented and mentioned in this paper have been implemented in HATS.

3 An Overview of TL

TL is an identity-based higher-order strategic language for rewriting parse trees. When a rule or strategy fails to apply to a term, the term is returned unchanged. In contrast, most strategic systems are failure-based because they will return a special value \(fail \) when a strategy fails to apply to a term. In TL, a domain (i.e., a term language) is defined using an Extended-BNF notation. Terms, or parse trees, are
classfile ::= “{” class super methods “}”
class ::= id
super ::= id
id ::= identifier

Figure 3: Grammar fragment for a simplified Java class file

described using a special abbreviated notation and are called parse expressions. This section gives an overview of TL.

3.1 Terms and Trees

While most strategic languages define term structures using abstract syntax, we use parsing technology to define term structures. Thus, when we say “structure” or “term” what we really mean is a parse tree. For a given grammar, we will write $B[[\alpha']]$ to denote a parse tree corresponding to the derivation $B \Rightarrow \alpha$ where any nonterminals occurring in α have been subscripted yielding α'. In general, we will use the term parse expression to refer to expressions of the form $B[[\alpha']]$.

When viewed from the perspective of parse trees the derivation $B \Rightarrow \alpha$ denotes a tree whose root is B and whose leaves are α. Nonterminals when they occur in leaf positions (i.e., in α) are subscripted so they may be distinguished from one another. A subscripted nonterminal is called a schema variable or simply a variable. Parse expressions containing no schema variables are referred to as being ground.

Consider the BNF grammar fragment shown in Figure 3 defining the structure of a simplified Java class file consisting of a class name, a super class name, and a methods section. A term describing such a class structure could be written as follows:

$$
classfile[[\{ \text{class}_1 \text{ super}_1 \text{ methods}_1 \}]]$$

Note that this term structure has a derivation length of one, since the nonterminal classfile directly derives $\{ \text{class super methods} \}$. We would like to point out that terms may also correspond to derivation sequences whose length are greater than one. For example, we could also write:

$$
classfile[[\{ \text{id}_1 \text{ id}_2 \text{ methods}_1 \}]]$$

The parse trees for both of the terms discussed are shown in Figure 4.

3.2 Match Equations and Match Expressions

Matching is a fundamental operation in our framework. We will use the symbol \ll adapted from the ρ-calculus [7] to denote first-order matching modulo an empty equational theory. Let t_2 denote a ground parse expression, and let t_1 denote a parse expression that may contain one or more schema variables. The equation $t_1 \ll t_2$ is a match equation. (Equivalently we may also write $t_2 \gg t_1$.) A match equation is a boolean valued operation that produces a substitution σ as a by-product. A substitution σ binding schema variables to ground parse expressions is a solution to $t_1 \ll t_2$ if $\sigma(t_1) = t_2$ with $=$ denoting
Figure 4: The parse trees corresponding to `classfile[[{class1 super1 methods1}]]` and `classfile[[{id1 id2 methods1}]]`

Figure 5: The semantics of sigma distribution

A boolean valued test for syntactic equality. When a match equation has a solution, the value of the match equation is the boolean value `true`.

A *match expression* is a boolean expression involving one or more match equations and forms the conditional portion of a rewrite rule (see Section 3.3). Match expressions may be constructed using the standard boolean operators: `∧`, `∨`, `¬`. A substitution `σ` is a solution to a match expression `m` iff `σ(m)` evaluates to true using the standard semantics for boolean operators in conjunction with the semantics defined in Figure 5.

3.3 Rewriting in TL

A basic first-order rewrite rule has the form:

```
  r : lhs → rhs if condition
```

where `lhs` and `rhs` denote terms as defined in the previous section, `lhs → rhs` denotes a body, `r` denotes an optional rule label, and `condition` denotes an optional match expression that a rule must satisfy.
before it can be successfully applied.

The application of a rule to a term has the same syntax as the application of a function to an argument. For example, the expression $r(t)$ denotes the application of the strategy r to the term t. We will only consider the application of rules to ground terms (i.e., terms exclusively having terminal symbols in leaf positions). Given this restriction, the application of the rule r to the term t can be accomplished by discovering a substitution σ such that $\text{lhs} \ll t$ is true while simultaneously satisfying the condition associated with the r. If this can be accomplished, then the rule application is said to succeed and the term $\sigma(\text{rhs})$ replaces t. On the other hand, if lhs cannot be matched with t or if the condition associated with the rule cannot be satisfied, then the rule application is said to fail. In TL, when a rule application $r(t)$ fails, the term t is returned unchanged.

When expressing strategy application, we adopt a curried notation in the functional style of ML where strategy application is left-associative and parenthesis can be used to override precedence or may be optionally included to enhance readability. For example, $r t$ denotes the application of r to t and has the same meaning as $r(t)$.

The body of a basic second-order rewrite rule has the form:

\[
\text{lhs}_2 \rightarrow \text{lhs}_1 \rightarrow \text{rhs}_1
\]

where the \rightarrow symbol is right-associative. The application of the second order strategy $\text{lhs}_2 \rightarrow \text{lhs}_1 \rightarrow \text{rhs}_1$ to a term t will yield a first-order strategy of the form $\sigma(\text{lhs}_1) \rightarrow \sigma(\text{rhs}_1)$ where σ is a substitution that matches lhs_2 and t. On the other hand, if the application fails, then the strategy skip is returned as the result of the application. The skip strategy never succeeds. Its use is described in Section 3.6. The strategy skip has the following properties:

\[
\begin{align*}
\text{skip}; s & \equiv s \\
\text{s}; \text{skip} & \equiv s \\
\text{skip} \ll s & \equiv s \\
\text{s} \ll \text{skip} & \equiv s \\
\text{skip} \rightarrow s & \equiv s \\
\text{s} \rightarrow \text{skip} & \equiv s
\end{align*}
\]

3.4 The Basics of TL

Figure 6 lists most of the primitives of TL. Figure 7 gives a few of the first-order generic traversals that are commonly used when constructing TL strategies.

The traversal TDL_BR is a broadcasting traversal. Broadcasting traversals are unique to TL and enable transient strategies to be controlled in interesting ways (see Section 3.6). The evaluation of the strategic expression $TDL_BR(s)t$ will first apply the strategy s to the term t. In the most general case, the result of such an application will alter both s as well as t (see Section 3.6). Let s' denote the strategy resulting from the application of s to t. Since TDL_BR is a broadcasting traversal, a distinct copy of s' will be applied to each of the sub-terms of t. Figures 8 and 9 respectively show the behavior of a tdl_broadcast and tdl traversal.
A strategy constant that never applies.

A conditional first-order strategy.

A conditional strategy of order $n + 1$.

Sequential composition: first apply s_1 and then apply s_2.

Left-biased choice: first try to apply s_1 and if that fails then try to apply s_2.

Right-biased choice: first try to apply s_2 and if that fails then try to apply s_1.

A unary combinator restricting the application of s^n.

(See discussion in Section 3.6).

Figure 6: The primitive constructs, combinators and constants of TL

<table>
<thead>
<tr>
<th>$s_1^n : s_2^n$</th>
<th>Sequential composition: first apply s_1 and then apply s_2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1^n << s_2^n$</td>
<td>Left-biased choice: first try to apply s_1 and if that fails then try to apply s_2.</td>
</tr>
<tr>
<td>$s_1^n => s_2^n$</td>
<td>Right-biased choice: first try to apply s_2 and if that fails then try to apply s_1.</td>
</tr>
</tbody>
</table>

Figure 7: Some basic first-order traversals of TL

3.5 Higher-Order Strategies in TL

In TL a second-order strategy s^2 can be applied to a term t yielding a first-order strategy s^1. More generally, the application of a strategy of order n to a term t will result in a strategy of order $n - 1$. The purpose of a second-order strategy is to create a first-order strategy containing data that is specific to a particular term. Typically this means that one or more schema variables will be bound to specific terms. For example, suppose that in the context of identifier renaming the identifier x is to be renamed to y. In this case, it would be convenient if a rule of the form $\text{ident}[[x]] \rightarrow \text{ident}[[y]]$ could be generated and applied to the appropriate terms. TL lifts and extends this idea to a higher-order framework.

For example, consider the abstract grammar shown in Figure 10.

Given this grammar, let us consider the second-order rewrite rule s^2 shown below:

$$s^2 : \text{g}[[i_1 \ \text{data}_1]] \rightarrow (\text{g}[[i_2 \ \text{i}_1]] \rightarrow \text{g}[[i_2 \ \text{data}_1]])$$

Informally speaking, the rule s^2 can be seen as a template for relating information between the terms data_1 and i_1 in a specific context. The application $s^2(\text{g}[[1 \ \text{b}]])$ yields the first-order strategy $\text{g}[[i_2 \ \text{1}]] \rightarrow \text{g}[[i_2 \ \text{b}]]$, and the application $(\text{g}[[i_2 \ \text{1}]] \rightarrow \text{g}[[i_2 \ \text{b}]])((\text{g}[[2 \ \text{1}]])$ yields $\text{g}[[2 \ \text{b}]]$. This instance, s^2 provides a vehicle for distributing data from $\text{g}[[1 \ \text{b}]]$ to $\text{g}[[2 \ \text{1}]]$.

In general, a higher-order traversal traverses a term and applies a higher-order strategy s^n to every term encountered. Because the strategy being applied is of order n, the result of an application will
be a strategy of order \(n - 1 \). If a traversal visits \(m \) terms, then \(m \) strategies of order \(n - 1 \) will be produced. Let \(s_{1}^{n-1}, s_{2}^{n-1}, \ldots, s_{m}^{n-1} \) denote the strategies resulting from such a traversal. Let \(\oplus \) denote a binary combinator such as sequential composition, left-biased choice, or right-biased choice. In TL, binary strategic combinators can be used to combine strategic results into a single strategy. That is, higher-order traversals will combine a sequence of resultant strategies \(s_{1}^{n-1}, s_{2}^{n-1}, \ldots, s_{m}^{n-1} \) into a strategy of the form:

\[
 s_{1}^{n-1} \oplus s_{2}^{n-1} \oplus \ldots \oplus s_{m}^{n-1}
\]

TL supports a number of higher order traversal including one called seq.tdl that traverses a term in a TDL fashion and composes the resulting strategies using the sequential composition operator. This higher order traversal is used in the method table construction example discussed in Section 4.3.
TL’s transient Combinator

The transient combinator is a special combinator in TL. This combinator restricts a strategy so that it may be applied at most once. This restriction motivates the introduction of strategic constant `skip` into the framework of TL.

Operationally, we define a strategy of the form `transient(s)` as a strategy that reduces to the strategy `skip` if the application of the strategy `s` has been observed. Thus, transients open the door to self-modifying strategies. When using a traversal to apply a self-modifying strategy to a term, a different strategy may be applied to every term encountered during a traversal.

We now consider an example demonstrating the behavior of transients. Figure 11 shows a simple grammar defining a list of items, where an item may be either an identifier or a integer. Figure 12 shows a left-biased composition of three transient strategies. Each transient strategy will rewrite the identifier `b` to a different integer value. Let `s` denote the strategy in Figure 12 and let `t` denote the term `item_list[[b b b]]` shown in Figure 13. The evaluation of the strategic expression `TDL(s)t` will yield the term `item_list[[1 2 3]]`.

It is worth noting that the strategy `s` can only be successfully applied to terms of the form `item[[b]]`, and there are three such terms in `t`. The strategy will fail to apply to any other term. During the course of a TDL traversal of `t`, the left-most occurrence of the identifier `b` is the first `item` encountered. The first transient in `s` will successfully apply to this item. This application will cause the transient to be reduced to `skip` while simultaneously rewriting `b` to the integer 1. As a result of the left-biased composition, no other strategies will be applied to this term. The next `item` that the traversal encounters is the second `b`. This time, the second transient (in the original strategy) will be applied to `b`. As a result of this rewrite, this transient will also be reduced to `skip`, and the second `b` will be rewritten to 2. The remaining occurrence of `b` is processed in a similar fashion.

In contrast, the evaluation of the strategic expression `TDL_BR(s)t` will yield the result `item_list[[1 1 1]]`. The root of the parse tree is the nonterminal `item_list`. Its left child is the `item` corresponding to the first occurrence of `b`. Its second child is another `item_list`. The application of `s` to the root will fail. A copy of `s` will be given to both children of the root. This will cause the first child (an `item`) to be rewritten to 1 and the corresponding transient to reduce to `skip`. However, this strategy reduction will not effect the copy of `s` which is passed to the second child. This second child is again an `item_list` to which `s` is being applied. Since this second child is an `item_list` the same analysis holds. So again, the first child of this node is an `item` that will be rewritten to 1, and so on.
4 A Class Loader for Java

At Sandia National Laboratories, a subset of the Java Virtual Machine (JVM) has been developed in hardware for use in high-consequence embedded applications. The implementation is called the Sandia Secure Processor (SSP) [16]. An application program for the SSP is called a ROM image and consists of a collection of class file-like structures stored on a read-only memory. The SSP is a closed system in the sense that all the structures used during execution must be present in the ROM image prior to execution. The closed nature of the SSP’s execution environment enables the class loading activities of the JVM to be performed statically, prior to execution. Under these conditions, the functionality of the class loader is well-suited to a strategic implementation.

In the discussion that follows, we assume that an application consists of one or more Java class files and that Java class files have the structure defined in Lindholm and Yellin [15]. For the purposes of this discussion it is important to know that class files contain:

1. a class entry denoting the name of the class;
2. a super entry denoting the name of the superclass; and
3. a methods section containing all of the methods declared within the class.

4.1 Method Table Requirements for the SSP

When implementing a Java Virtual Machine (JVM), method tables are often used as a mechanism for indirectly providing access to the methods associated with an object [25]. Each class file has one method table whose entries contain information about particular methods such as the address of the first byte code of a method and the address of the constant pool corresponding to a method. The SSP has been designed in such a way that in order to provide correct information at runtime, it is sufficient for method tables within a class hierarchy to satisfy the properties given below.

Let \(s_m \) denote the signature of method \(m \). Let \((C, s_m) \) denote a method table entry corresponding to a method having a signature \(s_m \) that is defined in class \(C \). Let \(T_C \) denote the method table for the class \(C \), and let \(\prec \) denote a reflexive, transitive sub-type relationship between classes as defined by the
Java extends directive. For example, given two classes \(B \) and \(C \), if \(C \prec B \) then either \(C = B \) or \(C \) is a descendent of \(B \) within the inheritance hierarchy.

1. For every inherited method \(m \) that is not redefined in \(C \) there must be a corresponding entry of the form \((B, s_m) \in T_C\) where the class \(B \) denotes most recent ancestor of \(C \) where \(m \) is defined.

2. For every method \(m \) (re)defined in a class \(C \) there must be a corresponding entry \((C, s_m) \in T_C\).

3. The method table for the class \(C \) may only contain entries corresponding to inherited methods or methods that have been defined in \(C \).

4. \(\forall D_1, D_2, s_m \exists B, C, i, j : T_{D_1}[i] = (B, s_m) \land T_{D_2}[j] = (C, s_m) \land D_1 \prec D_2 \rightarrow i = j \). That is, within an inheritance hierarchy table entries corresponding to the signature \(s_m \) must reside at the same location (index) in all tables containing such an entry. For example, if information for the most recent definition of the method \(\text{foo} \) (e.g., \(C.\text{foo} \)) resides at the second entry of the method table for \(D_2 \), then all descendant classes of \(D_2 \) (e.g., \(D_1 \)) must have the information for their most recent definition of \(\text{foo} \) (e.g., \(B.\text{foo} \)) as the second entry in their method tables.

The properties above permit method tables to be constructed in a concatenated fashion provided that entries associated with redefined methods destructively overwrite the corresponding inherited method table entries (e.g., the method table entry for the new definition of \(\text{foo} \) overwrites the method table entry for the old definition \(\text{foo} \)).

4.2 An Example of Method Table Construction

Figure 14 gives an abstraction of a Java application consisting of the classes A, B, C, and D. In the abstraction only the information relevant to method table construction is shown. Specifically, class A has \(\text{Object} \) as its super class and declares the methods \(f1, f2, \) and \(f3 \). Class B has class A as its
super class and redeclares method \(f_1 \) and declares method \(f_4 \). The remaining classes \(C \) and \(D \) can be similarly described.

The method tables shown in Figure 15 satisfy the SSP’s method table requirements given in Section 4.1.

![Figure 14: A simple application](image1)

<table>
<thead>
<tr>
<th>Class</th>
<th>Super</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Object</td>
<td>(f_1())
(f_2())
(f_3())</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>(f_1())
(f_4())</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>(f_2())
(f_4())</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>(f_1())
(f_4())</td>
</tr>
</tbody>
</table>

![Figure 15: Abstract method table entries for the classes A, B, C, and D](image2)

<table>
<thead>
<tr>
<th>Class</th>
<th>Method Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>info for A.f1()
info for A.f2()
info for A.f3()</td>
</tr>
<tr>
<td>B</td>
<td>info for B.f1()
info for A.f2()
info for A.f3()
info for B.f4()</td>
</tr>
<tr>
<td>C</td>
<td>info for A.f1()
info for C.f2()
info for A.f3()
info for C.f4()</td>
</tr>
<tr>
<td>D</td>
<td>info for D.f1()
info for C.f2()
info for A.f3()
info for D.f4()</td>
</tr>
</tbody>
</table>

![Figure 15: Abstract method table entries for the classes A, B, C, and D](image3)
4.3 Constructing SSP Method Tables in TL

The BNF grammar shown in Figure 16 is a greatly simplified description of the structure of a Java application. The grammar defines a Java application as consisting of an unordered list of Java class files. The class file structure has been simplified by abstracting away all structural elements that are irrelevant to the problem of method table construction. The grammar shown defines a children element as part of a class file. This element is not part of the class file structure as defined by the specification of the JVM [15] and has been added to facilitate strategic objectives.

```
app ::= app cf | ϵ
cf ::= "{" class super "][" methods "]" children "}"
class ::= id
super ::= id
methods ::= mt "," method_list
mt ::= mt_entry mt | ϵ
mt_entry ::= key
method_list ::= m_entry method_list | ϵ
m_entry ::= key "(" ")""n
children ::= children cf | ϵ
key ::= id "," id
index ::= integer
id ::= ident
```

Figure 16: A simplified grammar for class files

This discussion of method table construction begins at the point where the indexes within class files have been resolved to symbolic references by an earlier transformation phase. For example, the class and super elements for a class \(C \) are no longer constant pool indexes but are identifiers respectively corresponding to the symbolic references for name of \(C \) and the name of \(C \)'s super class. We assume that method table entries consist of symbolic references containing the following information: (1) the class where the method is defined, (2) the name of the method, and (3) the method’s descriptor.

Our strategic approach to solving the method table construction is as follows: First, class files are arranged into a tree structure reflecting their inheritance relationships. For example, if class \(B \) extends class \(A \) then class \(B \) will become a child of class \(A \). The strategies for creating this inheritance tree are shown in Figure 17. Second, the resulting inheritance tree structure is processed in a top down fashion, inserting methods into method tables as we go. In particular, all the locally declared methods are destructively inserted into the method table of the current class as well as the method tables of every class that inherits from the current class. The strategies for accomplishing this are shown in Figure 21.

The execution of the create_hierarch strategy shown in Figure 17 is described here. The evaluation of the expression \(seq_tdl subtype app[@] \) traverses the application \(app[@] \) in a top-down left-to-right fashion and applies the higher-order strategy subtype to every term encountered. The results from this application are then sequentially composed into a strategy that is then applied by the first-order traversal \(TDL \) to the term \(app[[\{\{obj obj[],\}]\]] \). The term \(app[[\{\{obj obj[],\}]\]] \) denotes the Object class, which in this
example is assumed to contain no method declarations. In practice, the contents of the Object class is
fixed so the create_hierarchy can be easily changed to describe its proper contents.

Let app_0 denote the application discussed in Section 4.2, and let \(cf_A, cf_B, cf_C, \) and \(cf_D \) denote the
terms corresponding to the classes \(A, B, C, \) and \(D \) respectively. Under these conditions the evaluation of \((seq_tdl\ subtype\ app_0) \) will create the sequentially composed transient strategies shown in Figure 18.

When applied to the term \(app[[\{obj\ obj[,]\}]] \), the first transient in the this strategy inserts the term
denoted by \(cf_A \) into the (empty) children list of \(obj \). Then the transient combinator causes this strategy
to be reduced to \(skip \). Thus \(cf_A \) will not be inserted anywhere else in the hierarchy. The strategy that
is returned from this application is shown in Figure 19. Similarly, when applied to the term \(cf_A \) the
application of the strategy shown in Figure 19 causes the terms denoted by \(cf_B \) and \(cf_C \) to be inserted
into the children list of \(cf_A \) at which time both corresponding transient strategies are reduced to \(skip \).
The strategy that is returned from this application is shown in Figure 20.

Finally, when applied to the term \(cf_C \), the application of the strategy shown in Figure 20 causes the
term denoted by \(cf_D \) to be inserted into the children list of \(cf_C \) at which time it also will be reduced to \(skip \). At this point, the construction of the inheritance hierarchy is complete.

The strategy construct_table shown in Figure 21 is responsible for constructing method tables within
a term structure corresponding to a class hierarchy constructed by the create_hierarchy strategy. The evaluation of the strategic expression \(TDL(distribute_entries)app_0 \) causes the distribute_entries strategy to be applied to parent classes before children classes. In particular, the strategy application will be consistent with the subtype ordering of the inheritance hierarchy. Taking a closer look at the distribute_entries strategy, the evaluation of the strategic expression \((seq_tdl\ merge_methods\ method_list_1) \) traverses the method list of the class \(cf_0 \) to which the strategy is being applied. For each method encountered it will produce a strategy of the form:

\[
transient(mt[[id_3 . id_2 \ mt_2]] → mt[[id_1 . id_2 \ mt_2]] \leftarrow mt[[\] → mt[[id_1 . id_2]])
\]

This strategy is capable of destructively overwriting a method table entry containing a prior definition
of the same method or of appending a method to the end of a method table. The application must still ensure that within an inheritance hierarchy, the method table entries corresponding to parent class method definitions are inserted into the method tables of all descendants before insertions of descendant classes are performed. This is accomplished by a TDL_BR traversal.

Returning to the simple application discussed in Section 4.2, we assume that the class files for \(obj, \)
\(A, B, C, \) and \(D \) have been formed into an inheritance hierarchy. In the strategy construct_tables, the
evaluation of the strategic expression \(TDL(distribute_entries)app_0 \) visits the classes in the following order: \(obj, A, B, C, \) and \(D \). To each of these classes, the strategy distribute_entries is applied.

Since \(obj \) has no methods and inherits no methods, its method table is empty. So without loss of
generality our discussion begins with the term corresponding to the class \(A \). Let method_list_1 denote
the method list for \(A \). The evaluation of the strategic expression \((seq_tdl\ merge_methods\ method_list_1) \) generates the strategy shown below for the methods declared in \(A \).

\[
\begin{align*}
transient(mt[[id_2 . f1() \ mt_2]] & → mt[[A . f1() \ mt_2]] \leftarrow mt[[\]] → mt[[A . f1()]]) \\
transient(mt[[id_2 . f2() \ mt_2]] & → mt[[A . f2() \ mt_2]] \leftarrow mt[[\]] → mt[[A . f2()]]) \\
transient(mt[[id_2 . f3() \ mt_2]] & → mt[[A . f3() \ mt_2]] \leftarrow mt[[\]] → mt[[A . f3()]])
\end{align*}
\]
$$\text{create_hierarchy} \quad : \quad \text{app}_0 \rightarrow \text{TDL(seq_tdl subtype app}_0) \text{app}[[\{\text{obj obj[,]\}}]]$$

$$\text{subtype} \quad : \quad \text{cf}_0 \rightarrow \text{transient(add_subtype(id}_2,\text{cf}_0))$$
if \(\text{cf}_0 \gg \text{cf}[[\{\text{id}_1 \text{id}_2 \text{methods}_1 \text{children}_1\}]] \)

$$\text{add_subtype(id}_2,\text{cf}_0) \quad : \quad \text{cf}[[\{\text{id}_2 \text{id}_3 \text{methods}_2 \text{children}_2\}]] \rightarrow \text{cf}[[\{\text{id}_2 \text{id}_3 \text{method}_2 \text{children}_2 \text{cf}_0\}]]$$

Figure 17: Strategies for creating a class hierarchy

\[
\begin{align*}
\text{transient(cf}[[\{\text{obj id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_A\}]]); \\
\text{transient(cf}[[\{\text{A id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_B\}]]); \\
\text{transient(cf}[[\{\text{A id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_C\}]]); \\
\text{transient(cf}[[\{\text{C id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_D\}]]);
\end{align*}
\]

Figure 18: The sequential composition of transient strategies

$$\text{skip} ;$$
$$\text{transient(cf}[[\{\text{A id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_B\}]]); \\
\text{transient(cf}[[\{\text{A id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_C\}]]); \\
\text{transient(cf}[[\{\text{C id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_D\}]]);
\]

Figure 19: The strategy remaining after inserting \(\text{cf}_A \) into the children list of \(\text{obj} \).

$$\text{skip} ;$$
$$\text{skip} ;$$
$$\text{transient(cf}[[\{\text{C id}_3 \text{methods}_2 \text{children}_2\}]] & \rightarrow \text{cf}[[\{\text{obj id}_3 \text{method}_2 \text{children}_2 \text{cf}_D\}]]);$$

Figure 20: The strategy remaining after inserting \(\text{cf}_B \) and \(\text{cf}_C \) into the children list of \(\text{cf}_A \).

$$\text{construct_tables} \quad : \quad \text{app}_0 \rightarrow \text{TDL(distribute_entries)app}_0$$
$$\text{distribute_entries} \quad : \quad \text{cf}_0 \rightarrow \text{TDL_BR (seq_tdl merge_methods method_list}_1 \text{) cf}_0$$
if \(\text{cf}_0 \ll \text{cf}[[\{\text{class}_1 \text{super}_1 \{\text{mt}_1, \text{method_list}_1\} \text{children}_1\}]]) \)

$$\text{merge_methods} \quad : \quad \text{m_entry}[\{\text{id}_1, \text{id}_2\} \} \rightarrow \text{transient(merge(id}_1,\text{id}_2))$$

$$\text{merge(id}_0,\text{id}_1) \quad : \quad \text{mt}[[\text{id}_3, \text{id}_2, \text{mt}_2]] \rightarrow \text{mt}[[\text{id}_1, \text{id}_2, \text{mt}_2]] \leftrightarrow \text{mt}[[\text{id}_1, \text{id}_2]]$$

Figure 21: Strategies for inserting methods into method tables
This strategy is applied using the broadcasting traversal TDL_BR, which accomplishes the following: (1) the method table for A is populated, and (2) the method table for every descendant of A is populated with entries corresponding to A.f1(), A.f2(), and A.f3(). At this point, the method table for A is complete, and the method tables for all the descendants of A are not yet complete. They are identical to the method table of A. The class B is the next class to which the distribute_entries strategy is applied. The strategy resulting from this application is shown below:

\begin{align*}
\text{transient}(\text{mt}[[\text{id}_2 \cdot f1() \text{ mt}_2]] &\rightarrow \text{mt}[[B \cdot f1() \text{ mt}_2]] \leftarrow \text{mt}[[B \cdot f1()]]) \\
\text{transient}(\text{mt}[[\text{id}_2 \cdot f4() \text{ mt}_2]] &\rightarrow \text{mt}[[B \cdot f4() \text{ mt}_2]] \leftarrow \text{mt}[[B \cdot f4()]])
\end{align*}

The TDL_BR traversal causes this strategy to be applied to the method table of B as well as the descendants of B (of which there are none). The application overwrites the entry for A.f1() to B.f1() and adds an entry for B.f4() to the end of B’s method table. At this point the method table for B is complete.

The next class to which the distribute_entries strategy will be applied is C. The strategy resulting from this application is shown below:

\begin{align*}
\text{transient}(\text{mt}[[\text{id}_2 \cdot f2() \text{ mt}_2]] &\rightarrow \text{mt}[[C \cdot f2() \text{ mt}_2]] \leftarrow \text{mt}[[C \cdot f2()]]) \\
\text{transient}(\text{mt}[[\text{id}_2 \cdot f4() \text{ mt}_2]] &\rightarrow \text{mt}[[C \cdot f4() \text{ mt}_2]] \leftarrow \text{mt}[[C \cdot f4()]])
\end{align*}

The TDL_BR traversal causes this strategy to be applied to the method table of C as well as the descendants of C, namely the class D. The application overwrites the entry for A.f1() to C.f1() and adds an entry for C.f4() to the end of the method tables for both C and D. At this point the method table for C is complete and the traversal proceeds on to D, which is processed in a similar fashion.

5 Assurance

Sandia requires the development of the SSP to produce strong evidence of the correctness of the system. The class loader is a weak link in the assurance chain of the SSP. Commercial compilers take Java source code and produce class files. The assurance provided by a commercial compiler stems from several sources including the fact that the Java community at large performs an extensive stress test of the compiler. Over time, such a testing environment causes a software product to mature. While bugs may still exist in the compiler, the likelihood of encountering a bug in the class loader is significantly greater. Thus, considerable effort is being devoted towards providing assurance in the translation performed by the SSP class loader. In particular we are interested in applying formal reasoning techniques to verify general properties of the class loader.

The assurance provided by formal reasoning comes in the form of a mathematical proof and typically involves a model of the system under analysis (rather than the actual system itself). General properties are stated in terms of theorems involving the model. The proof of theorems provides strong assurance that the model behaves as required. Assurance of the correctness of the system under analysis relies on (1) confidence that the proofs themselves are sound and (2) confidence that the model faithfully describes the system: theorems that hold for the model hold for the system. While it is theoretically possible to automate the construction of proofs, in practice it is extremely difficult and requires sophisticated tools and approaches.
We are using the modeling and verification framework provided by ACL2 [11][12] to formally prove theorems about the class loader. ACL2 is a programming language based on the applicative subset of Common Lisp. In this language, users can build executable models of software systems. ACL2 is also a tool that assists users in proving theorems about their ACL2 programs.

The class loader is modeled as a system that consists of states and state transitions. The state is modeled by the class files of the Java application, and the state transitions are defined by the transformations on this application. The JVM and the SSP provide the basis for formally understanding equivalence between states.

A model of HATS is constructed by defining an abstract machine that controls the application of transformation rules. Each transformation rule modifies the state of the system. The abstract machine operates according to the following sequence: fetch the next transformation rule and node from the current state, apply the transformation, and return a new machine state.

Though we are exploring the verification of a number of properties of the class loader, our ultimate goal is to verify that the transformation rules preserve the meaning of the term to which they are applied (i.e., the class loader is correct). In the context of the SSP, the initial term is a set of class files, \(C_0 \), generated by a Java compiler. The semantics of this term is defined by the JVM specification. We can think of the JVM as defining a mapping from \((\text{classfiles} \times \text{inputs})\) to \(\text{outputs}\). Let \(\text{Eval}_{JM} : \text{classfiles} \times \text{inputs} \rightarrow \text{outputs} \) denote this mapping function. \(\text{Eval}_{JM} \) defines the behavior of the program encoded in the class files. The final term is a ROM image, which we denote \(C_{\text{ROM}} \). The semantics of this term is defined by the SSP hardware, \(\text{Eval}_{SSP} \). HATS accomplishes the conversion of \(C_0 \) to \(C_{\text{ROM}} \), as indicated by the notation \(C_{\text{ROM}} = T^*(C_0) \). In this notational framework, what must be shown for inputs \(I \) is:

\[
\forall (C_0, I) \text{Eval}_{JM}(C_0, I) = \text{Eval}_{SSP}(T^*(C_0), I)
\]

The problem above can be decomposed by defining a sequence of normal forms, \(C_0, C_1, C_2, ... \) in the transformation of \(C_0 \) to \(C_{\text{ROM}} \). Properties about these normal forms are formally specified and become theorems within our verification framework. Constant pool normalization and field distribution are two examples of transformations leading to normal forms. In constant pool normalization all indirection is removed from the constant pool entries of the class files in \(C_0 \). Let \(T^1 \) denote the transformation that accomplishes this task. Similarly, let \(T^2 \) denote the normal form resulting from field distribution. At present, a sequence of five intermediate normal forms have been defined. For each normal form, there is an evaluation function, \(\text{Eval}_n \). Thus, the original correctness conjecture can be restated as a sequence of conjectures:

\[
\forall (C_0, I) \text{Eval}_{JM}(C_0, I) = \text{Eval}_1(T^1(C_0), I) = \text{Eval}_2(T^2(T^1(C_0)), I) = \text{Eval}_{SSP}(T^*(C_0), I)
\]

24
where T^* is the composition of the individual transformations. This allows the proof to be constructed incrementally, and therefore, reduces the complexity of the proof.

6 Related Work

ASF+SDF [5], ELAN [3], Stratego [27] and Maude [8] are operational systems that can be used for program transformation. The ρ-calculus [7] and the S'_7-calculus [13] are theoretical frameworks in which program transformation can be considered. With the exception of the ρ-calculus, none of these systems directly support higher-order rewrite rules or strategies. Furthermore, none of these systems support the dynamic (i.e., at runtime) construction of strategies or the transient combinator.

However, Stratego does support the ability to dynamically add and remove rules to an existing rule base [26]. This capability can be understood as a restriction of the dynamic strategy creation possible in TL. Stratego also supports the ability to construct rules having contextual matches [28]. Contextual matching enables non-local information to be brought together within a match expression. It turns out that the behavior of a contextual match can be directly implemented using the match and build primitives of Stratego within the context of a nested traversal. Contextual matches can also be readily simulated using the higher-order capabilities of TL.

ELAN [3] is a first-order failure-based rewrite system in which an AC matching algorithm [9] can be used as the mechanism for the syntactic comparison of terms. ELAN is a strategic system whose semantic foundation rests upon the ρ-calculus. Rewrite rules can be labeled and one or more rules may share the same label. Thus labels are bound to rule bases. The consequence of AC matching and labeled rule bases is that the application of a rule (base) to a specific term may yield multiple results. This form of non-determinism surrounding rule base application is central to ELAN and gives the system a deductive/declarative flavor. ELAN provides a variety of choice combinators together with a backtracking capability as mechanisms for dealing with the non-determinism.

ASF+SDF [2] is a first-order identity-based rewriting framework in which an extended form of matching provides the mechanism for the syntactic comparison of terms. The extension to matching permits associative matching on lists structures. In [5] ASD+SDF is further developed so that one can combine parameterized rewrite rules with a fixed set of generic traversals. The result of such a combination is a traversal function – which is essentially a rewrite rule annotated with an appropriated predefined traversal. One of the goals in [5] is to provide primitives so that the resulting traversal functions can be used in a type-safe manner.

ACL2 has been used to prove the correctness of hardware implementations of microprocessors and floating point algorithms as well as parts of implementations of the JVM. Our approach to modeling the class loader is based on a heavily-researched model in which a system is described in terms of states and state transitions.

Boyer and Yu used Nqthm, the predecessor of ACL2, to formalize a substantial subset of a commercial microprocessor, the Motorola MC68020[4]. Based on this model, they were able to verify many binary machine code programs produced by commercial compilers from source code in such high-level languages as Ada, Lisp, and C.

Moore[17][21] also used the same approach to model Piton, an assembly programming language that is implemented on a microprocessor, the FM8502, via a compiler, an assembler, and a linker. A
The piton interpreter was coded in the ACL2 logic in which given an initial state p_0 you obtain state p_n by running piton forward n steps. However, the alternative approach is to map p_0 to down to a FM8502 state (or core image), run the FM8502, and map the resulting state back up. The compiler, assembler and linker were also defined as functions in the ACL2 logic. The implementation of was mechanically proved correct.

More recently, this type of model has been used to reason about the behavior of computations described in terms of Java byte codes[18][19][20][22].

The general approach was to model a significant subset of the JVM operationally using ACL2. This model was used to execute certain Java programs by compiling them into bytecode. The model consists of a state of the JVM and state transition function for each JVM bytecode instruction in the subset. Basically, the state is a triple containing a thread table, a heap, and a class table. The transition function takes an instruction, a thread, and a state, and returns a new state that is the result of executing the given instruction on the given thread in the given state. The new state is a modification of the previous state.

7 Conclusion

In this article we have argued that higher-order rewrite rules and strategies enhance the ability of rewriting techniques to concisely realize complex transformational objectives, specifically objectives surrounding the manipulation of non-localized data. The implications for software development are that (1) the techniques of higher-order rewriting may enable more complex transformational objectives to be realized in a practical setting, and (2) the conciseness offered by higher-order rules and strategies could positively impact the ability of automated reasoning systems like ACL2 to verify the correctness of transformations.

TL is a higher-order strategic programming system with several unique features including: (1) the ability to dynamically construct strategies, (2) the ability to control strategy application through a special combinator called a transient thereby opening the door to self-modifying strategies, and (3) the ability to broadcast a copy of a strategy to every child of a term. When combined, these capabilities have a synergistic effect enabling a variety of transformational objectives to be solved in an elegant fashion. The effectiveness of this paradigm is shown by demonstrating how method tables can be constructed for abstract Java class files.

The implementation of the JVM being targeted by this demonstration is the Sandia Secure Processor (SSP). The SSP is a hardware implementation of a subset of the JVM for use in high-consequence safety-critical embedded systems. Within the SSP, method tables are used as a mechanism for indirectly providing access to the methods associated with an object. The strategic programming concepts shown have been successfully scaled to the real world, realizing the entire class loader for the SSP. This implementation was accomplished in HATS, a restricted dialect of TL that is freely available [10].

The Sandia Secure Processor project places a high priority on the provision of strong evidence that the system behaves correctly. Currently, a weak link in the chain of evidence is in the software that performs class loading. In order to provide strong evidence of correctness in the strategic programming solution to the class loader problem, we are developing a framework for proving correctness. This framework, based on the ACL2 theorem proving system, is intended to show that the transformation of
terms preserves the initial semantics. A difficulty encountered in such a verification is how to formally state the notion of functional equivalence between the different incarnations of class files that arise during the course of transformation. This problem is solved by a series of Eval functions, with each function being capable of processing class files at a particular levels of abstraction (e.g., prior to symbolic resolution). When completed, the nature of the evidence provided by such a formal verification of the class loader can constitute a major component of an argument that the class loader for the SSP meets its dependability requirements.

References

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí

[10] \url{http://faculty.ist.unomaha.edu/winter/hats-uno/HATSWEB/index.html}

Distribution:

1 MS0510 Greg Wickstrom, 2116
1 MS0510 James McCoy, 2116
1 MS0510 Anna Schauer, 2116

2 Victor Winter
 PKI 174 C
 1110 South 67th Street
 Omaha, NE 68182

2 Steve Roach
 Department of Computer Science
 University of Texas at El Paso
 El Paso, TX 79968-0518

1 MS9018 Central Technical Files, 8945-1
2 MS0899 Technical Library, 9616