VAWT Stochastic Wind Simulator

James H. Strickland

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789
VAWT Stochastic Wind Simulator

James H. Strickland
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

A stochastic wind simulation for VAWTs (VSTOC) has been developed which yields turbulent wind-velocity fluctuations for rotationally sampled points. This allows three-component wind-velocity fluctuations to be simulated at specified nodal points on the wind-turbine rotor. A first-order convection scheme is used which accounts for the decrease in streamwise velocity as the flow passes through the wind-turbine rotor. The VSTOC simulation is independent of the particular analytical technique used to predict the aerodynamic and performance characteristics of the turbine. The VSTOC subroutine may be used simply as a subroutine in a particular VAWT prediction code or it may be used as a subroutine in an independent processor. The independent processor is used to interact with a version of the VAWT prediction code which is segmented into deterministic and stochastic modules. Using VSTOC in this fashion is very efficient with regard to decreasing computer time for the overall calculation process.
Contents

1 INTRODUCTION ... 1

2 GENERAL VSTOC METHODOLOGY 2
 2.1 VAWT Flow Field Characteristics 2
 2.2 Interfacing To VAWT Prediction Codes 4

3 WIND SIMULATION ... 6
 3.1 Spectral Model ... 6
 3.2 Non-dimensional Time-Series 7
 3.3 Time-Series At Moving Nodes 9

4 VSTOC SUBROUTINE .. 13
 4.1 Subroutine Description 13
 4.2 Input-Output ... 15

5 SUMMARY AND CONCLUSIONS 18

6 REFERENCES ... 19

7 PROGRAM LISTING ... 20
 7.1 VSTOC Subroutine 20
 7.2 VSTOC With Input-Output Drivers 23
(This page intentionally left blank.)
1 INTRODUCTION

During the period 1973-1983, major advances were made concerning the understanding of the aerodynamic behavior of vertical-axis wind turbines (VAWTs). A review of aerodynamic analysis techniques, which were developed during that time period, is given by Strickland [1]. Prior to about 1983, virtually no attempts were made to examine the effects of atmospheric turbulence on the performance of VAWTs. This was partially due to the fact that the power output from VAWTs is not significantly affected by atmospheric turbulence. For example, in a 1981 study by Sheldahl [2], good agreement between field and wind tunnel data concerning power output were obtained. The emphasis during this time period was oriented toward the optimization of VAWTs from an energy performance standpoint. The effect of atmospheric turbulence on VAWTs became important only as designers became concerned about the structural fatigue life of such machines.

Vees [3] was one of the first investigators to examine the effects of atmospheric turbulence on VAWTs. In his work, Veers formulated a three-dimensional turbulence model for the VAWT. He then utilized a simplified version of the model in which numerous planes of coherent turbulence were first produced upstream of the turbine rotor and then convected downstream through the rotor. The convection velocity was predicted using results from a "multiple streamtube" VAWT prediction code [4]. The stochastic wind model and the aerodynamic prediction code were integrated into a single code in this study. The resulting computer code was therefore not immediately adaptable to use with other VAWT prediction codes.

In a 1984 study, George [5] obtained turbulence data for VAWTs by monitoring an array of wind sensors placed in a circle at a constant elevation. The data from these sensors were rearranged to simulate a rotational sampling sequence. Powell and Connell [6] developed a computer model for simulating turbulence data for VAWTs which is an analytical counterpart to the experimental work of George. In this work, they note that one of the effects of rotational sampling is that energy is transferred from frequencies lower than the rotational frequency to the rotational frequency and its harmonics. The major weakness of their simulation is that the effect of the wind turbine rotor on turbulence convection velocities is neglected. As will be demonstrated later, the retardation of the flow, due to the presence of the rotor, increases the transfer of energy into the rotational frequency band from lower frequencies. Therefore, it appears to be necessary to include this effect in order to obtain a valid simulation.

In the present work, the general philosophy was to provide a simulation which includes information on convective velocities through the rotor but which is not explicitly part of any particular VAWT aerodynamic code. This was accomplished by first noting the characteristics of the flow field through a VAWT. Characteristics of the streamwise convective velocity through the rotor were then placed in a model which requires only a single input parameter from a VAWT aerodynamic code.
2 GENERAL VSTOC METHODOLOGY

2.1 VAWT Flow Field Characteristics

In order to develop the VAWT STOChastic wind simulation, the nature of the flow field around a vertical-axis wind turbine was examined utilizing information obtained by Strickland and Goldman [7]. Strickland and Goldman calculated the flow field around a typical two-bladed three-dimensional vertical-axis wind turbine using a computer code based on vortex theory. A sample of these results is reproduced in Figure 1.

![Figure 1: Calculated velocity-defect profiles for a three-dimensional two-bladed rotor.](image)

In Figure 1, the velocity defect profiles are shown for several streamwise stations in the equatorial plane. Here \bar{U} is the upstream velocity, U is the local velocity, x is the streamwise location, and D is the wind turbine rotor diameter. Details concerning turbine operating conditions can be found in reference [7]. As can be seen in this figure, the velocity across the rotor is somewhat uniform and probably accounts for the ability of the original single-streamtube momentum model due to Templin [8] to make reasonable performance predictions. Calculated centerline velocities from [7] are shown in Figure 2. As can be seen from this figure, the centerline velocity at the upstream edge of the rotor is essentially that of the freestream. The velocity defect then varies in an approximately linear fashion through the rotor. The velocity at the downstream edge of the rotor is reasonably close to the asymptotic value of the velocity downstream of the rotor.
Figure 2: Centerline velocity in the near wake of a three-dimensional two-bladed rotor.

Figure 3: VSTOC velocity distribution model.
In order to model the convective velocities through the rotor, it will be assumed that the velocity profiles can be approximated as shown in Figure 3. In this figure, the convection of stochastic wind fluctuations is modeled by assuming a uniform velocity defect across the rotor with a linear variation through the rotor in the streamwise direction. The retardation of the flow begins at the position of the upstream blade passage (in that plane) and reaches the wake velocity at the position of the downstream blade passage. This simple model requires only a single input parameter (the wake velocity U_w) from the aerodynamic code. The wake velocity is the asymptotic value of the velocity in the near wake. For example, in a simple momentum model, the wake velocity defect is twice the "disk velocity" defect. In a double-multiple streamtube model, the wake velocity defect is twice the average velocity defect between the upstream and downstream rotor blade positions. For free vortex models, the wake velocity can be obtained by time averaging the velocity at the downstream edge of the rotor over one revolution.

2.2 Interfacing To VAWT Prediction Codes

The purpose of the VSTOC simulation is to provide a necessary part of a larger simulation which will produce blade load distributions as a function of time. There are essentially three parts to the overall simulation. These parts consist of a VAWT “aerodynamic module,” the VSTOC module and, a VAWT “performance module.” This requires that the typical VAWT prediction code be broken up into an aerodynamic module and a performance module. In general, the aerodynamic module is used to predict the deterministic fluid kinematics of the flow around the turbine, VSTOC predicts the stochastic fluid kinematics, and the performance module is used to calculate rotor blade force distributions as a function of time.

The required output from the aerodynamic module consists of velocity defect or velocity perturbation values (u_a, v_a, w_a) in the (x, y, z) directions as a function of the streamwise, vertical, and lateral position of a rotor blade element. These calculated data are required for only one revolution of the rotor since they are deterministic and periodic with time. The wake velocity U_w is also to be calculated for use in VSTOC. In the simplest case, only a single value of U_w at some reference height is required. If a non-uniform vertical distribution of U_w is desired, then such a distribution must be produced by the aerodynamic module. As mentioned previously, the aerodynamic module produces results that are deterministic. It is assumed that the wind fluctuations do not significantly affect the average periodic perturbation velocities produced by the wind machine. This assumption is completely valid for cases where the rotor blades are not experiencing aerodynamic stall (high tip-to-windspeed ratios). On the other hand, for low tip-to-wind speed ratios, where aerodynamic stall does occur, the perturbation velocities are small in comparison to the freestream velocity. Therefore, this assumption should yield good results throughout the complete operating range of tip-to-wind speed ratios. The ability to use such deterministic solutions as part of the overall calculation procedure greatly reduces computer time requirements since there is no need to make
perturbation velocity calculations for a large number of rotor revolutions. CPU time requirements would otherwise be prohibitive for VAWT aerodynamic simulations which are produced by vortex codes such as VDART3 [9].

The VSTOC simulation produces the stochastic wind perturbation velocities $u', v', \text{ and } w'$ for specified nodes on the rotor blade. A time-series is thus produced at each specified node. The length of the time-series is somewhat a matter of choice. In general, for good simulations, it has a duration of between 30 and 150 rotor revolutions which results in a 1,000 to 5,000 point time-series. The time increment is typically chosen to be the same as that used in the VAWT aerodynamic module.

The VAWT performance module uses the perturbation velocities (u_a, v_a, w_a) and (u', v', w') calculated by the VAWT aerodynamic module and VSTOC simulation, respectively, as input. These perturbation velocities are mixed to yield total perturbation velocities due to the presence of the rotor and due to atmospheric turbulence. Blade load calculations are then easily made based on the total perturbation velocity, the freestream velocity, and the rotor blade motion. These calculations are made for a record length which is the same as that of the VSTOC simulation. Calculations proceed rapidly in this module since the perturbation velocities are known apriori.
3 WIND SIMULATION

3.1 Spectral Model

The spectral model used in the present work is that given by Frost, Long, and Turner [10]. The spectral power density ϕ_W is given by:

$$\phi_W = \left(\frac{\sigma^2}{n}\right) \frac{0.164\eta^+/\eta_0}{1 + 0.164(\eta^+/\eta_0)^{1/4}}$$ \hspace{1cm} (1)

where σ is the turbulence intensity, n is the frequency in Hz, and η^+ is the frequency normalized by the height above ground h and the mean velocity \bar{U} at that point ($\eta^+ = nh/\bar{U}$). η_0 is a constant which depends upon the x, y, z fluctuation directions ($\eta_0 = 0.0144, 0.0962, 0.0265$). Here x is the streamwise direction, y is the vertical direction, and z is the lateral direction.

Equation 1 does not exactly satisfy the relationship between the turbulence intensity level and the spectral power density which is given by:

$$\sigma^2 \equiv \int_0^\infty \phi_W dn.$$ \hspace{1cm} (2)

In order to force this identity to hold, the constant in the numerator in Equation 1 was changed from 0.164 to 0.171. The actual value of the rms turbulence intensity is given by:

$$\sigma = \frac{\bar{U}C}{\ln\left(\frac{h}{h_0} + 1\right)}$$ \hspace{1cm} (3)

where C is a constant which depends upon the x, y, z fluctuation directions ($C = 1.00, 0.52, 0.64$) and h_0 is the turbulence roughness height.

Finally, the spectral power density can be non-dimensionalized by normalizing with the height above ground, the mean velocity, and the turbulence intensity:

$$F \equiv \frac{\phi_W \bar{U}}{h\sigma^2} = \frac{0.171/\eta_0}{1 + 0.164(\eta^+/\eta_0)^{1/4}}.$$ \hspace{1cm} (4)

At this point it is appropriate to estimate the maximum frequency which should appear in the truncated Fourier time-series used to simulate the wind perturbations. As can be seen from Equation 4, the maximum spectral contribution occurs at a zero frequency and decays asymptotically to zero for large frequencies. If one places the cut-off frequency at that value where F is 0.05 percent of its zero frequency value, then the non-dimensional cutoff frequency is:

$$\eta^+_{max} \approx 283\eta_0.$$ \hspace{1cm} (5)

Using the maximum value of η_0 one finds that η^+_{max} is equal to 27. For later convenience, the value of η^+_{max} will be set equal to 25 instead of 27.
3.2 Non-dimensional Time-Series

Using the power spectra presented in the above section one can construct a Fourier time-series representation of the fluctuation velocity. In non-dimensional form, this series can be written as:

\[V^+ = \sigma^+ \sum_{j=1}^{N_p/2} \left[A_j^+ \sin (2\pi \eta_j^+ \tau^+) + B_j^+ \cos (2\pi \eta_j^+ \tau^+) \right] \]

where the fluctuation velocity \(V' = u', v', \text{or } w' \) and the \textit{rms} turbulence intensity \(\sigma = \sigma_z, \sigma_v, \text{or } \sigma_s \) are normalized by \(\bar{U} \) such that:

\[V^+ = \frac{V'}{\bar{U}} \quad \text{and} \quad \sigma^+ = \frac{\sigma}{\bar{U}}. \]

Values for the coefficients \(A_j^+ \) and \(B_j^+ \) are given in terms of the non-dimensional spectral power density, the dimensionless frequency band \(\Delta \eta^+ \), and a random phase angle \(\phi_j \) as:

\[A_j^+ = (2F_j \Delta \eta^+) ^{1/2} \sin \phi_j \]
\[B_j^+ = (2F_j \Delta \eta^+) ^{1/2} \cos \phi_j. \]

The time \(\tau \) is non-dimensionalized by the mean velocity and the height above ground \((\tau^+ = \tau \bar{U} / h) \). The summation in Equation 6 is to be carried out for \(j = 1 \) to \(N_p/2 \), where \(N_p \) is the number of points in the time-series. The length of the time-series is related to the smallest frequency represented in the spectra by:

\[\tau_{\text{max}}^+ = \frac{1}{\Delta \eta^+}. \]

Since the maximum frequency is given by:

\[\eta_{\text{max}}^+ = \frac{N_p}{2} \Delta \eta^+ = 25 \]

then it follows that \(N_p = 50 \tau_{\text{max}}^+ \) and \(\Delta \tau^+ = 0.02 \).

A typical time-series is shown in Figure 4 where \(N_p \) is equal to 1000. It is important to note that \(N_p \) should not be allowed to drop much below 1000 in order to adequately capture the low-frequency portion of the spectra. In Figure 5 the effect of \(N_p \) on the \textit{rms} turbulence intensity as simulated by the time-series is clearly shown. In this figure, the \textit{rms} turbulence intensity specified in the input spectra is equal to unity in all cases. This also implies that the time-series length \((\tau_{\text{max}}^+) \) should be greater than about 20.

7
Figure 4: Time-series simulation of wind-velocity fluctuations.

Figure 5: Simulated turbulence intensity levels.
3.3 Time-Series At Moving Nodes

Nodes which are downstream of the point at which the turbulence is generated will effectively experience a time delay in the stochastic series of the previous section. For a node which is moving, this delay changes as a function of time since the time delay is solely a function of streamwise position. In order to enter the calculated stochastic data set \((V^+, r^+)\) with the proper value of \(\tau^+\) the following transformation must be made:

\[
\tau^+(x) = \tau^+(x_{so}) - \Delta \tau_D^+. \tag{11}
\]

Here, the value of \(\tau^+(x_{so})\) is equal to \(t \bar{U}/h\), where \(t\) is the actual time. The quantity \(\Delta \tau_D^+\) is the non-dimensional time delay and \(x_{so}\) is the streamwise distance from the vertical axis of the turbine to the point at which the turbulence is generated (see Figure 3). The position \(x_{so}\) should be upstream of the position \(x\), i.e., \(x_{so}\) should be less than or equal to the negative of the rotor radius \(r\) in a given horizontal plane \((x_{so} \leq -r)\).

The time delay \(\Delta \tau_D^+\), at any position \(x\), is obtained from the integral:

\[
\Delta \tau_D^+ = \frac{\bar{U}}{h} \int_{x_{so}}^{x} \frac{dx}{U}. \tag{12}
\]

Here, the velocity distribution \(U(x)\) is of the form which is indicated in Figure 3. Using this velocity distribution in Equation 12 yields a formulation for \(\Delta \tau_D^+\) of:

\[
\Delta \tau_D^+ = \frac{r}{h c_2} \left[\frac{1}{c_1} \ln \left(c_1 + c_2 \frac{x}{r} \right) - \frac{x_{so}}{r} - 1 \right]. \tag{13}
\]

This equation is valid in the region of interest for the moving nodes \((-r \leq x \leq r\)). The coefficients \(c_1\) and \(c_2\) are a function of the wake velocity \(U_W\) and are given by:

\[
c_1 = \frac{1}{2} \left(\frac{U_W}{\bar{U}} + 1 \right) \tag{14}
\]

\[
c_2 = \frac{1}{2} \left(\frac{U_W}{\bar{U}} - 1 \right).
\]

As noted previously, the value of \(\tau^+(x_{so})\) in Equation 11 is equal to \(t \bar{U}/h\), where \(t\) is the time. The time \(t\) can be expressed as the product of the number of time increments \(N_T\) and the time increment \(\Delta t\). It is convenient to non-dimensionalize the time \(t\) by the maximum rotor radius \(R\) and the "wind velocity" \(U_\infty\). In other words, \(t^+ \equiv tU_\infty/R\). Here, \(U_\infty\) is an arbitrary reference velocity which is used to define the "tip-to-wind speed ratio." The time increment \(\Delta t^+\) can be expressed in terms of the number of time increments per revolution of the rotor \(N_T\) and the tip speed of the rotor \(U_T\) by:

\[
\Delta t^+ = \frac{2\pi}{N_T} \frac{U_\infty}{U_T}. \tag{15}
\]

Therefore the value of \(\tau^+(x_{so})\) may be calculated from:

\[
\tau^+(x_{so}) = \frac{2\pi R N_T}{h} \frac{U_\infty}{N_T U_T U_\infty} \frac{U}{U_\infty}. \tag{16}
\]
In the VSTOC simulation, the positions of all specified nodes are calculated and used in Equations 13 and 11 to obtain $\tau^+(x)$ values at a particular time. Values of the turbulence velocities u', v', w' are then obtained from the data set (V^+, τ^+) by interpolation. This procedure is then repeated at each time step. In some cases τ^+ will be negative or greater than τ^+_{max}. Since the Fourier series is periodic, these “out-of-range” values are simply shifted by multiples of τ^+_{max} into the first period of the series. It should also be noted that the VSTOC simulation uses the same number of points to calculate the τ^+ series and the t^+ series. This implies that in order for the t^+ series to use all of the information in the τ^+ series, in a non-repetitive way, the following condition should be met:

$$\Delta \tau^+ \approx \frac{R}{h} \frac{\bar{U}}{U_\infty} \Delta t^+ \tag{17}$$

As was noted earlier, the time increment $\Delta \tau^+$ is equal to 0.02 whereas the time increment Δt^+ is given by Equation 15. Obviously, this condition cannot be met for all nodes on the rotor since \bar{U}/h is in general not a constant. However, the condition should be made to apply somewhere in the vicinity of the rotor equator.

In order to illustrate the use of the VSTOC simulation, a simple example will be given. In Figure 6 a two-node problem is illustrated. Nodes 1 and 2 are moving with the rotor while node 3 is fixed at the streamwise location where the turbulence is generated. In this particular simulation, nodes 1 and 2 are moving at a tangential velocity U_T which is 3.14 times the reference windspeed U_∞, the wake velocity U_W is equal to \bar{U}, \bar{U} in turn is equal to U_∞, the local radius r is equal to the maximum rotor radius R, and the turbulence intensity in the streamwise direction is 25-percent. There are 50 time steps per revolution, with a total of 1,000 steps. The simulation starts with the rotor angle θ equal to 0-deg. A “seed number” for the random number generator associated with producing a random phase angle is required. The seed number in this simulation was chosen as 0.5.

![Figure 6: Node locations for example VSTOC simulation.](image)
In Figure 7 the streamwise turbulence component u'/\bar{U} is given for the three nodes. At first glance, the turbulence signatures are quite similar. After closer examination, however, it is clear that the signals at nodes 1 and 2 contain additional oscillations which are at the rotational frequency of the rotor (the period Δt^+ for one revolution is 2.0).

In order to gain a clearer understanding of the effect of observations from a moving node in a field of turbulence, it is useful to produce a turbulence signal generated at the fixed node 3 which has a single frequency. In Figure 8, a sinusoidal turbulence signal is introduced into the flow at node 3 and allowed to convect downstream. In this case, the frequency of the sinusoidal turbulence is lower than the rotational frequency. Two different values of U_w were chosen to show the effect of flow retardation on the turbulence observed from the moving nodes. As can be seen in Figure 8 there is a significant oscillation introduced for the moving nodes at the rotational frequency of the rotor (the rotational frequency is the same as in Figure 6). The amplitude of these secondary oscillations is a function of the slope of the turbulent input signal. This implies that secondary oscillations are amplified with increasing turbulence frequencies so long as they are less than the rotational frequency. When one observes the effect of flow retardation on the secondary oscillations, it is clear that the amplitude of
Figure 8: Moving node response to sinusoidal input velocity.

These oscillations are increased by increased flow retardation. It can, in fact, be shown from Equation 13 that the excursion in Δt_P^* during each rotor revolution is increased as U_w/\bar{U} decreases, going to infinity as U_w/\bar{U} approaches zero. This explains the indicated amplification and also suggests that as Δt_P^* excursions exceed the period of a particular turbulence wavelength that the energy in that frequency band is shifted to a higher frequency band. Therefore, it appears that flow retardation effects are essential in stochastic simulations for VAWTS, at least in the medium to high tip-to-wind speed range.
4 VSTOC SUBROUTINE

4.1 Subroutine Description

The VSTOC subroutine calls three other subroutines and manages their input and output. The first subroutine called, generates a non-dimensional stochastic turbulent wind series whose time base is r^+. This subroutine is thus designated as the TAUS Series (TAUS) subroutine. TAUS in turn calls two FFT subroutines which are a part of the SLATEC library. The second subroutine called by VSTOC calculates the streamwise or X positions of the moving rotor BLADE nodes at various times and is thus called XBLADE. The third subroutine (TIMES) generates TIME Series for the same moving blade nodes. A schematic of the subroutine organization is shown in Figure 9. A more detailed description of each subroutine is given in the following paragraphs.

Figure 9: Subroutine organization.

In lines 6-8 of the VSTOC subroutine listed in Section 7.1, values of $CC(1)$, $CC(2)$, and $CC(3)$ are defined. These parameters are the same as C associated with Equation 3. Values of ETA0X, ETA0Y, and ETA0Z given in lines 9-11 are the same as η_0 in Equation 1. TMAX in line 12 is equivalent to r_{max}^+ and is related to NP (N_P) according to Equations 9 and 10. In lines 13-15 the subroutine TAUS is called three times for the calculation of the velocity fluctuation components u'/σ, v'/σ, and w'/σ. These parameters appear as VX, VY, and VZ in the subroutine arguments. A seed number (SEED) is required as input to the TAUS subroutine in order to initiate a random number generator. In lines 18-20, three arrays are defined (UPR(NOD+z,NT), etc.) which essentially represent the data set (V^+, r^+). In these equations, NOD is the number of specified moving nodes and NT=N_T is the time increment number which is related to r^+. In line 21, the subroutine XBLADE is called. Input to XBLADE
includes the number of time increments per rotor revolution NTI=N_{TI} and the parameter XSO. XSO is equal to the streamwise position \(x_{so} \) at which the turbulence is generated divided by the rotor radius \(R \). Node geometry is input in terms of the radius ratio RR, where \(RR=r/R \), and the initial angular position BTHET. The output from XBLADE is an array of streamwise nodal positions (XB) at a particular time. Here, \(XB = x_b/R \). Lines 23-25 yield geometry information for a fixed reference node located at a height \(H=h/R \) and a streamwise position \(XSO=x_{so}/R \). The wake velocity \((UW = U_w/\hat{U}) \) and the mean velocity \((UB = \hat{U}/U_{\infty}) \) are given in lines 26 and 27 for the same reference node. US0 is the value of \(\hat{U}/U_{\infty} \) at the reference node. In lines 28-30 the subroutine TIMES is called in order to generate the velocity fluctuation components \(u'/\sigma \), \(v'/\sigma \), and \(w'/\sigma \) at each node. These fluctuations correspond to UNP, VNP, and WNP. The tip-to-windspeed ratio \(UT=U_T/U_{\infty} \) is also required as an input into TIMES. The value of SIGMA=\(\sigma/\hat{U} \) is obtained in lines 31-36 for the three components of velocity. If SIGMA is input as a negative number, then it is calculated according to Equation 3. On the other hand, if SIGMA is input as a positive number, lines 31-36 yield a value of SIGMA equal to that number. Finally, the actual turbulent velocity fluctuations \(u'/\hat{U} \), \(v'/\hat{U} \), and \(w'/\hat{U} \) are calculated as UPR, VPR, and WPR in lines 38-40.

The subroutine TAUS is used to generate a stochastic wind series from the spectral model. In line 4, the value of AZERO=\(A^+_0 \) is set equal to zero since TAUS generates fluctuations about the mean velocity \(\hat{U} \). Line 5 represents Equation 9 where \(DELETA=\Delta \eta^+ \). The subroutine EZFFTI, which is called in line 6, is required to initialize the subroutine EZFFTIB. These two subroutines, which are a part of the SLATEC math library, form a Fast Fourier Transform package used to convert the spectral data into a time-series. The array WSAVE, which is placed in the argument of EZFFTI, is a work array which must have dimensions of at least 3NP+15. In the present case, the maximum value of NP is 5,000. Line 8 calculates ETA=\(\eta^+_j \) based on \(\Delta \eta^+ \). The random phase angle PHI=\(\phi_j \) is calculated in line 9. A random number generator (RAND), which is available from the SLATEC library, is used in the calculation of PHI. The argument for RAND, which is denoted by SEED, must initially be set equal to some value between 0.0 and 1.0. In line 11, the spectral power density \(F=F_j \) is calculated based on Equation 4. The coefficients \(A=A^+_j \) and \(B=B^+_j \) are calculated in lines 12 and 13 according to Equation 8. Finally, the FFT package is used in line 15 to calculate VSIG=\(V^+/\sigma^+ \) according to Equation 6.

The subroutine XBLADE is used to calculate the streamwise positions of each moving node at a given time. In line 4, the angular position of the rotor is calculated based on the time increment number NT and the number of time increments per revolution of the rotor NTI. In line 6, the initial angular position of node 1, in degrees, is given by BTHET(I) whereas BTHETR is the angular position in radians. In line 7, the streamwise position \(XB=x_b/R \) is obtained for all nodes. As indicated in line 5, the number of nodes is equal to NOD.

The subroutine TIMES is used to obtain the velocity fluctuation components \(u'/\sigma \), \(v'/\sigma \), and \(w'/\sigma \) at each node. The parameter VPR corresponds to either \(u'/\sigma \), \(v'/\sigma \), or \(w'/\sigma \), depending upon the parameters placed in the TIMES subroutine argument list.
from VSTOC. TMAX in line 4 is equivalent to \(r_{\text{max}}^+ \) and is related to NP \((N_p)\) according to Equations 9 and 10. The parameter RRX is equal to \(r/R \). In line 5, C1 represents \(c_1 \) and \(\text{UWX} = U_w/\bar{U} \) from Equation 14. In line 7, C2 is equal to \(c_2 R/r \). Line 7 is equivalent to the second part of Equation 14. In lines 8-21 the parameter \(\text{DELTAU} = \Delta r^+_2 \) is calculated using Equation 12. In these lines, \(\text{XX} \) is the streamwise position \(z/R \) and \(\text{HX} \) is the elevation \(h/R \). Line 22 represents a combination of Equations 11 and 16. TAU is equal to \(\tau^+(x) \) while \(\text{UBX} = \bar{U}/\bar{U}_\infty \). Lines 23-26 shift "out of range" values of \(\tau^+ \) into the first period of the Fourier series. Lines 27-32 provide interpolation logic to obtain the proper value of \(\text{VPR} = (u'/\sigma, v'/\sigma, \text{or} \ w'/\sigma) \) from one of the arrays represented by VS. The arrays VS=(VX, VY, or VZ) were generated previously by the subroutine TAUS.

4.2 Input-Output

The input-output will be discussed with regard to the VSTOC subroutine listed in section 7.1 and the VSTOC with input-output drivers listed in section 7.2. In general, the user will only be interested in the input-output characteristics of the basic VSTOC subroutine. For completeness, however, a brief description of VSTOC with input-output drivers will be given.

In the basic VSTOC subroutine, there are 15 parameters in the argument list. The input consists of 9 single-valued parameters and 6 single subscripted arrays. The output consists of 3 double subscripted arrays. The input argument list can be described as follows:

- **NOD \(\equiv \text{NODES} \)** - an integer which value specifies the number of moving nodes on the rotor. Its maximum value is 98.
- **NTI \(\equiv \text{NTI} \)** - an integer which specifies the number of time increments per revolution of the rotor.
- **NP \(\equiv \text{NP} \)** - an integer which specifies the number of time increments in the time-series. Its value should be between 1,000 and 5,000.
- **UT \(\equiv U_T/U_\infty \)** - a real variable which is the tip-to-windspeed ratio.
- **HO \(\equiv h_O/R \)** - a real variable which is the ratio of the roughness height to the rotor radius.
- **XSO \(\equiv x_{so}/R \)** - a real variable which is the ratio of the streamwise position at which the turbulence is generated to the rotor radius. This variable also specifies the streamwise position of the fixed node.
- **HSO \(\equiv h_{so}/R \)** - a real variable which is the ratio of the height above ground at the fixed node to the rotor radius.
USO \equiv \tilde{U}_i / U_\infty - a real variable which is the ratio of the upstream wind velocity at the fixed node to the reference wind velocity.

SIGMA(K) \equiv \sigma_k - a real array with three components (k = 1, 2, 3) which specifies the x, y, and z components of the turbulence intensity. The values are specified as positive decimal fractions unless the user wants the subroutine to calculate values internally. In that case, any set of negative real values may be input.

SEED \equiv Seed - a real variable which is arbitrarily chosen between 0.0 and 1.0. Each choice will produce a different stochastic series from the same spectral data.

BTHET(I) \equiv \theta_i - a real array which specifies the initial angular position of node i when \(t^+ = 0.0 \). The maximum value of I is 98.

RR(I) \equiv r_i / R - a real array which is the radius of node i with respect to the vertical axis divided by the rotor radius (maximum).

H(I) \equiv h_i / R - a real array which specifies the height above ground of node i divided by the rotor radius.

UB(I) \equiv \bar{U}_i / U_\infty - a real array which specifies the average wind velocity upstream of node i divided by the reference wind velocity.

UW(I) \equiv U_{wi} / U_i - a real array which specifies the wake velocity downstream of node i divided by the average wind velocity upstream of node i.

The output consists of non-dimensional three-component velocity fluctuations for each of the nodes, including the fixed node. These double subscripted real arrays represent the calculated values of the streamwise velocity fluctuations as a function of time. They are non-dimensionalized by the average upstream velocity at the appropriate node i. The subscript j denotes the time step number. The non-dimensional time \(t^+ \) is obtained from the product of j and \(\Delta t^+ \) which is given in Equation 15. The fixed node is assigned a node number \(I = \text{NOD} + 1 \). The output argument list is given by:

UPR(I,J) \equiv u_{ij} / \bar{U}_i - a real array which represents the non-dimensional streamwise velocity fluctuation at each node as a function of time.

VPR(I,J) \equiv v_{ij} / \bar{U}_i - a real array which represents the non-dimensional vertical velocity fluctuation at each node as a function of time.

WPR(I,J) \equiv w_{ij} / \bar{U}_i - a real array which represents the non-dimensional lateral velocity fluctuation at each node as a function of time.

The VSTOC program with input-output drivers, as listed in section 7.2, was written specifically to demonstrate the features of the VSTOC subroutine. An input file whose name is VSTOC.INPUT is required for execution of the program. Tabular output, which includes input parameters as well as calculated results, is written to a file.
whose name is VSTOC.OUTPUT. The calculated results, which are tabulated, consist of the of the first 40 values of u'/σ, v'/σ, and w'/σ in the τ^+ series and the first 40 values of u'/\bar{U}, v'/\bar{U}, and w'/\bar{U} in the t^+ series at each node. In the τ^+ series, the parameters SIGMAX, SIGMAY, and SIGMAZ are simulated rms values of u'/σ, v'/σ, and w'/σ respectively. In the t^+ series, the parameters SIGMAU, SIGMAV, and SIGMAW are simulated rms values of u'/\bar{U}, v'/\bar{U}, and w'/\bar{U} respectively. Graphical results are contained in a file named FOR077.DAT. Typical output from this program is included at the end of the program listing in section 7.2. The format of the input file VSTOC.INPUT is as shown in Table 1.

<table>
<thead>
<tr>
<th>Record</th>
<th>Parameter</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NOD</td>
<td>I10</td>
</tr>
<tr>
<td>2</td>
<td>NTI</td>
<td>I10</td>
</tr>
<tr>
<td>3</td>
<td>NP</td>
<td>I10</td>
</tr>
<tr>
<td>4</td>
<td>UT</td>
<td>F10.4</td>
</tr>
<tr>
<td>5</td>
<td>HO</td>
<td>F10.4</td>
</tr>
<tr>
<td>6</td>
<td>XSO</td>
<td>F10.4</td>
</tr>
<tr>
<td>7</td>
<td>HSO</td>
<td>F10.4</td>
</tr>
<tr>
<td>8</td>
<td>USO</td>
<td>F10.4</td>
</tr>
<tr>
<td>9</td>
<td>SIGMA(1)</td>
<td>F10.4</td>
</tr>
<tr>
<td>10</td>
<td>SIGMA(2)</td>
<td>F10.4</td>
</tr>
<tr>
<td>11</td>
<td>SIGMA(3)</td>
<td>F10.4</td>
</tr>
<tr>
<td>12</td>
<td>SEED</td>
<td>F10.4</td>
</tr>
<tr>
<td>13</td>
<td>BTHET(1),RR(1),H(1),UB(1),UW(1)</td>
<td>5F10.4</td>
</tr>
<tr>
<td>14</td>
<td>BTHET(2),RR(2),H(2),UB(2),UW(2)</td>
<td>5F10.4</td>
</tr>
</tbody>
</table>

Table 1: Input to VSTOC with input-output drivers
5 SUMMARY AND CONCLUSIONS

A stochastic wind simulation for VAWTs (VSTOC) has been developed which yields turbulent wind-velocity fluctuations for rotationally sampled points. This allows three-component wind-velocity fluctuations to be simulated at specified nodal points on the wind-turbine rotor. A first-order convection scheme is used which accounts for the decrease in streamwise velocity as the flow passes through the wind-turbine rotor. The VSTOC simulation is independent of the particular analytical technique used to predict the aerodynamic characteristics of the turbine since only time-averaged centerline wake velocities are required as input into VSTOC from a given VAWT aerodynamic code. This information is obtainable from virtually all known VAWT aerodynamic codes. The most efficient utilization of the VSTOC subroutine is to use it in a post processor to a VAWT aerodynamic code. The VAWT aerodynamic code is required to calculate only the deterministic periodic flow field, independent of wind turbulence. Deterministic flow velocities from the VAWT aerodynamic module are mixed with the stochastic flow velocities from VSTOC and used in a VAWT performance module to predict blade loading.

There are two major conclusions that should be emphasized as a result of this work. They are as follows:

- The inclusion of flow retardation through the rotor is essential, since flow retardation significantly affects the transfer of turbulent energy from lower frequencies into higher frequencies at the moving rotor blade nodes.

- The concept of using three computational modules (VAWT aer., VSTOC, and VAWT perf.) for predicting blade loading in turbulent winds should yield good results at all tip-to-windspeed ratios since flow perturbations due to the rotor are small when the aerodynamics are non-linear (i.e. aerodynamic stall at low tip-to-windspeed ratios). This method is very efficient with respect to minimizing computer time.
6 REFERENCES

7 PROGRAM LISTING

7.1 VSTOC Subroutine

01 SUBROUTINE VSTOC(SEED,NTI,NP,UT,UB,UW,H,H0,XSO,HSO,USO,SIGMA,
02 $NOD,BTHET,RR,UPR,VPR,WPR)
03 DIMENSION SIGMA(3),CC(3),XB(100),UPR(100,5000),VPR(100,5000),
04 $WPR(100,5000),VX(5000),VY(5000),VZ(5000),RR(100),BTHET(100).
05 $H(100),UB(100),UW(100)
06 CC(1)=1.00
07 CC(2)=0.62
08 CC(3)=0.64
09 ETAOX=.0144
10 ETAOY=.0962
11 ETAOZ=.0265
12 TMAX=FLOAT(NP)/60.0
13 CALL TAUS(NP,TMAX,VX,ETAOX,SEED)
14 CALL TAUS(NP,TMAX,VY,ETAOY,SEED)
15 CALL TAUS(NP,TMAX,VZ,ETAOZ,SEED)
16 CONTINUE
17 DO 20 NT=1,NP
18 UPR(NOD+2,NT)=VX(NT)
19 VPR(NOD+2,NT)=VY(NT)
20 WPR(NOD+2,NT)=VZ(NT)
21 CALL XBLADE(NOD,NTI,NT,XB,XSO,RR,BTHET)
22 DO 30 I=1,NOD+1
23 XB(NOD+1)=XSO
24 H(NOD+1)=H0
25 RR(NOD+1)=-XSO
26 UW(NOD+1)=1.0
27 UB(NOD+1)=USO
28 CALL TIMES(VX,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),UNP)
29 CALL TIMES(VY,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),VNP)
30 CALL TIMES(VZ,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),WNP)
31 DO 10 J=1,3
32 IF(SIGMA(J).LT.0.0) THEN
33 SIGMA(J)=CC(J)/LOG(H(I)/HO+1.0)
34 ELSE
35 SIGMA(J)=SIGMA(J)
36 END IF
37 CONTINUE
38 30 CONTINUE
39 20 CONTINUE
40 RETURN
41 END

01 SUBROUTINE TAUSS(NP,TMAX,VSIG,ETA0,SEED)
02 DIMENSION VSIG(5000),A(2500),B(2500),WSAVE(15015)
03 PI=4.0*ATAN(1.0)
04 AZERO=0.0
05 DELETA=1.0/TMAX
06 CALL EZFFTI(NP,WSAVE)
07 DO 20 I=1,NP/2
08 ETA=DELETA*(FLOAT(I)-0.5)
09 PHI=2.0*PI*RAND(SEED)
10 SEED=0.0
11 F=0.171/(ETA0*(1.0+0.164*(ETA/ETA0)**(5.0/3.0)))
12 A(I)=SQRT(2.0*F*DELETA)*SIN(PHI)
13 B(I)=SQRT(2.0*F*DELETA)*COS(PHI)
14 20 CONTINUE
15 CALL EZFFTB(NP,VSIG,AZERO,A,B,WSAVE)
16 RETURN
17 END

01 SUBROUTINE XBLADE(NOD,NTI,NT,XB,XSG,RR,BTHET)
02 DIMENSION RR(100),BTHET(100),XB(100)
03 PI=4.0*ATAN(1.0)
04 RTHET=FLOAT(NT)*2.0*PI/FLOAT(NTI)
05 DO 10 I=1,NOD
06 BTHETR=BTHET(I)*PI/180.0
07 XB(I)=-RR(I)*SIN(RTHET+BTHETR)
08 10 CONTINUE
09 RETURN
10 END
SUBROUTINE TIMES(VS, NT, NTI, NP, UT, UBX, UWX, HX, XX, XSO, RRX, VPR)
DIMENSION VS(6000)
PI=4.0*ATAN(1.0)
TMAX=FLOAT(NP)/50.0
C1=(1.0+UWX)/2.0
IF(RRX.EQ.0.0) RRX=.001
C2=-(1.0-UWX)/(2.0*RRX)
IF(C2.EQ.0.0) THEN
DELTAU=(XX-XSO)/HX
GO TO 30
ELSE
END IF
IF(XX.LE.-RRX) THEN
DELTAU=(XX-XSO)/HX
ELSE
IF(XX.LE.RRX) THEN
DELTAU=(-RRX-XSO+LOG(C1+C2*XX)/C2)/HX
ELSE
DELTAU=(-RRX-XSO+LOG(C1+C2*RRX)/C2+(XX-RRX)/UWX)/HX
END IF
END IF
TAU=2.0*PI*UBX*FLOAT(NT)/(UT*FLOAT(NTI)*HX)-DELTAU
IF(TAU.LT.0.0)GO TO 10
IF(TAU.GE.TMAX)TAU=TAU-TMAX
N=INT(50.0*TAU)
IF(N.EQ.0) THEN
VPR=VS(NP)+(50.0*TAU)*(VS(1)-VS(NP))
ELSE
VPR=VS(N)+(50.0*TAU-FLOAT(N))*(VS(N+1)-VS(N))
END IF
RETURN
7.2 VSTOC With Input-Output Drivers

DIMENSION SIGMA(3), BTHET(100), RR(100), H(100), UB(100), UW(100),
$UPR(100,5000), VPR(100,5000), WPR(100,5000)
CALL VSTART(1.013,6)
CALL INPUT(SEED,NTI,NP,UT,UB,UW,H,H0,XSO,HSO,USO,SIGMA,NOD,
$BTHET,RR)
CALL VSTOC(SEED,NTI,NP,UT,UB,UW,H,H0,XSO,HSO,USO,SIGMA,NOD,
$BTHET,RR,UPR,VPR,WPR)
NPP=40
CALL OUTPUT(NOD,NTI,NP,NPP,UPR,VPR,WPR,BTHET)
CALL DONEPL
STOP
END

SUBROUTINE INPUT(SEED,NTI,NP,UT,UB,UW,H,H0,XSO,HSO,USO,SIGMA,$
$NOD,BTHET,RR)
DIMENSION SIGMA(3), BTHET(100), RR(100), H(100), UB(100), UW(100)
PI=4.0*ATAN(1.0)
OPEN(UNIT=11,STATUS='OLD',FILE='VSTOC.INPUT')
OPEN(UNIT=12,STATUS='NEW',FILE='VSTOC.OUTPUT')
READ(11,3) NOD,NTI,NP,UT,H0,XSO,HSO,USO,SIGMA(1),SIGMA(2),
$SIGMA(3), SEED
WRITE(12,15) SEED,NTI,NP,UT,H0,XSO,HSO,USO<SIGMA(1),SIGMA(2),
$SIGMA(3)
DO 2 I=1,NOD
READ(11,13) BTHET(I), RR(I), H(I), UB(I), UW(I)
WRITE(12,17) I, BTHET(I), RR(I), H(I), UB(I), UW(I)
2 CONTINUE
WRITE(12,19)
3 FORMAT(I10,/,I10,/,I10,/,I10.4,/,I10.4,/,I10.4,/,I10.4,/
$F10.4,/,F10.4,/,F10.4,/,F10.4,/,F10.4,/
$F10.4,/,F10.4,/,F10.4,/,F10.4,/,F10.4,/
$F10.4,/,F10.4,/,F10.4,/,F10.4,/
$F10.4,/)
15 FORMAT('1',
$/25X,'***',
$/25X,'* GENERAL INPUT *',
$/25X,'***',
$/25X,'* SEED =',F9.3,' *',
$/25X,'* NTI =',I5,' *',
$/25X,'* NP =',I5,' *',
$/25X,'* UT =',F9.3,' *',
$/25X,'* HO =',F9.3,' *',
$/25X,'* XSO =',F9.3,' *',
$/25X,'* HSO =',F9.3,' *',
$/25X,'* USO =',F9.3,' *',
$/25X,'* SIGX =',F9.3,' *',
$/25X,'* SIGY =',F9.3,' *',
$/25X,'* SIGZ =',F9.3,' *',
$/25X,'***/
$/10X,'***/
$/10X,'***/
17 FORMAT(10X,'* ',I3,3X,F8.4,2X,F8.4,2X,F8.4,2X,F8.4,2X,F8.4,2X,F8.4')
19 FORMAT(10X,'***/
RETURN
END
SUBROUTINE VSTOC(SEED,NTI,NP,UT,UB,UW,H,HO,XSO,HSO,USO,SIGMA,
$NOD,BTHET,RR,UPR,VPR,WPR)
DIMENSION SIGMA(3),CC(3),XB(100),UPR(100,5000),VPR(100,5000),
$WPR(100,5000),VX(5000),VY(5000),VZ(5000),RR(100),BTHET(100),
$H(100),UB(100),UW(100)
CC(1)=1.00
CC(2)=.62
CC(3)=.64
ETAOX=.0144
ETAOY=.0962
ETAOZ=.0265
TMAX=FLOAT(NP)/50.0
CALL TAUS(NP,TMAX,VX,ETAOX,SEED)
CALL TAUS(NP,TMAX,VY,ETAOY,SEED)
CALL TAUS(NP,TMAX,VZ,ETAOZ,SEED)
CONTINUE
DO 20 NT=1,NP
UPR(NOD+2,NT)=VX(NT)
VPR(NOD+2,NT)=VY(NT)
WPR(NOD+2,NT)=VZ(NT)
CALL XBLADE(NOD,NTI,NT,XB,XSO,RR,BTHET)
DO 30 I=1,NOD+1
XB(NOD+I)=XSO
H(NOD+I)=HSO
RR(NOD+I)=-XSO
UW(NOD+I)=1.0
UB(NOD+I)=USO
CALL TIMES(VX,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),UNP)
CALL TIMES(VY,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),VNP)
CALL TIMES(VZ,NT,NTI,NP,UT,UB(I),UW(I),H(I),XB(I),XSO,RR(I),WNP)
DO 10 5=1,3
IF(SIGMA(J).LT.0.0) THEN
SIGMA(J)=CC(J)/LOG(H(I)/HO+1.0)
ELSE
SIGMA(J)=SIGMA(J)
ENDIF
CONTINUE
UPR(I,NT)=SIGMA(1)*UNP
VPR(I,NT)=SIGMA(2)*VNP
WPR(I,NT)=SIGMA(3)*WNP
30 CONTINUE
20 CONTINUE
RETURN
END

SUBROUTINE TAU$\text{S}(NP,TMAX,VSIG,ETAO,SEED)$
DIMENSION VSIG(5000),A(2500),B(2500),WSAVE(15015)
PI=4.0*ATAN(1.0)
AZERO=0.0
DELETA=1.0/TMAX
CALL EZFFTI(NP,WSAVE)
DO 20 I=1,NP/2
ETA=DELETA*(FLOAT(I)-0.5)
PHI=2.0*PI*RAND(SEED)
SEED=0.0
F=0.171/(ETAO*(1.0+0.164*(ETAO/ETAO)**(5.0/3.0)))
A(I)=SQRT(2.0*F*DELETA)*SIN(PHI)
B(I)=SQRT(2.0*F*DELETA)*COS(PHI)
20 CONTINUE
CALL EZFFTB(NP,VSIG,AZERO,A,B,WSAVE)
RETURN
END

SUBROUTINE XBLADE(NOD,NTI,NT,XB,XSO,RR,BTHET)
DIMENSION RR(100),BTHET(100),XB(100)
PI=4.0*ATAN(1.0)
RTHET=FLOAT(NT)*2.0*PI/FLOAT(NTI)
DO 10 I=1,NOD
BTHETR=BTHET(I)*PI/180.0
XB(I)=-RR(I)*SIN(RTHET+BTHETR)
10 CONTINUE
RETURN
END
SUBROUTINE TIMES(VS, NT, NTI, NP, UT, UBX, UWX, HX, XX, XSO, RRX, VPR)
DIMENSION VS(5000)
PI = 4.0*ATAN(1.0)
TMAX = FLOAT(NP)/60.0
C1 = (1.0+UWX)/2.0
IF(RRX .EQ. 0.0) RRX = .001
C2 = -(1.0-UWX)/(2.0*RRX)
IF(C2 .EQ. 0.0) THEN
 DELTAU = (XX-XSO)/HX
 GO TO 30
ELSE
 END IF
 IF(XX .LE. -RRX) THEN
 DELTAU = (XX-XSO)/HX
 ELSE
 IF(XX .LE. RRX) THEN
 DELTAU = (-RRX-XSO+LOG(Cl+C2*XX)/C2)/HX
 ELSE
 DELTAU = (-RRX-XSO+LOG(Cl+C2*RRX)/C2+(XX-RRX)/UWX)/HX
 END IF
 END IF
END IF
30 TAU = 2.0*PI*UBX*FLOAT(NT)/(UT*FLOAT(NTI)*HX)-DELTAU
10 IF(TAU .LT. 0.0) TAU = TAU+TMAX
 IF(TAU .LT. 0.0) GO TO 10
20 IF(TAU .GE. TMAX) TAU = TAU-TMAX
 IF(TAU .GE. TMAX) GO TO 20
 N = INT(50.0*TAU)
 IF(N .EQ. 0) THEN
 VPR = VS(NP)+(50.0*TAU)*(VS(1)-VS(NP))
 ELSE
 VPR = VS(N)+(50.0*TAU-FLOAT(N))*(VS(N+1)-VS(N))
 END IF
END IF
RETURN
END
SUBROUTINE OUTPUT(NOD, NTI, NP, NPP, UT, UPR, VPR, WPR, BTHET)
DIMENSION UPR(100, 5000), VPR(100, 5000), WPR(100, 5000), BTHET(100),
$TAU(5000), TIME(5000), VX(5000), VY(5000), VZ(5000), U1(5000),
$U2(5000), U3(5000)
PI=4.0*ATAN(1.0)
IF(NP.LT.1000.0) THEN
 WRITE(12,11)
11 FORMAT('I',
$ //15X, '***',
$ /15X, 'WARNING!!!',
$ /15X, '***',
$ /15X, 'RESULTS MAY BE INACCURATE FOR NP LESS',
$ /15X, ' THAN 1000. CHECK SIMULATED SIGMAS FROM',
$ /15X, ' TAU-SERIES. THESE SHOULD',
$ /15X, ' BE APPROXIMATELY EQUAL TO 1.00.',
$ /15X, '***')
END IF
DELT=0.02
SX=0.0
SY=0.0
SZ=0.0
DO 50 I=1, NP
 TAU(I)=DELT*I
 TIME(I)=2.0*PI*FLOAT(I)/(FLOAT(NTI)*UT)
 VX(I)=UPR(NOD+2, I)
 VY(I)=VPR(NOD+2, I)
 VZ(I)=WPR(NOD+2, I)
 U1(I)=UPR(1, I)
 U2(I)=UPR(2, I)
 U3(I)=UPR(NOD+1, I)
 SX=SX+VX(I)*VX(I)
 SY=SY+VY(I)*VY(I)
 SZ=SZ+VZ(I)*VZ(I)
50 CONTINUE
RMSVX = SQRT(SX/FLOAT(NP))
RMSVY = SQRT(SY/FLOAT(NP))
RMSVZ = SQRT(SZ/FLOAT(NP))
WRITE(12,13) RMSVX, RMSVY, RMSVZ

13 FORMAT('1',
 $ /15X,'**',
 $ /15X,'* NORMALIZED TAU-SERIES *',
 $ /15X,'**',
 $ /15X,'* SIGMAX='F7.4,' * NORMALIZED VALUES *',
 $ /15X,'* SIGMAY='F7.4,' * OF *',
 $ /15X,'* SIGMAZ='F7.4,' * SIGMA. *',
 $ /15X,'**',
 $ /15X,'*',
 $ /15X,'* - TAU-SERIES - *',
 $ /15X,'*')
WRITE(12,17)

17 FORMAT(15X,'* TAU',7X,'VX',8X,'VY',8X,'VZ *')
DO 40 I=1,NPP
WRITE(12,15) TAU(I), VX(I), VY(I), VZ(I)

15 FORMAT(15X,'* ',F6.2,2X,3F10.5,' *')
CONTINUE
WRITE(12,19)

19 FORMAT(15X,'**')
CALL TAUPLOT(1000, VX, VY, VZ, TAU)
DO 30 J=1,NOD+1
 SU=0.0
 SV=0.0
 SW=0.0
 DO 10 I=1,NP
 SU=SU+UPR(J,I)*UPR(J,I)
 SV=SV+VPR(J,I)*VPR(J,I)
 SW=SW+WPR(J,I)*WPR(J,I)
 CONTINUE
RMSU = SQRT(SU/NP)
RMSV = SQRT(SV/NP)
RMSW = SQRT(SW/NP)
WRITE(12, 3) J, RMSU, RMSV, RMSW

3 FORMAT('1',
$ /15X, '**',
$ /15X, ' * NODE ', I3, ' * TIME-SERIES *',
$ /15X, '**',
$ /15X, ' * SIGMAU='',F7.4,' * SIMULATED VALUES *',
$ /15X, ' * SIGMAV='',F7.4,' * OF *',
$ /15X, ' * SIGMAW='',F7.4,' * SIGMA. *',
$ /15X, '**',
$ /15X, ' * Time-Series - *',
$ /15X, ' *)
WRITE(12, 7)

DO 20 I=1, NPP
XTHET=FLOAT(I)*360.0/FLOAT(NTI)
THET=THET(J)+XTHET
THETA=AMOD(THET, 360.0)
WRITE(12, 5) TIME(I), THETA, UPR(J, I), VPR(J, I), WPR(J, I)
5 FORMAT(15X, '*, F6.2, 3X, F6.2, 1X, 3F10.5, '*)
20 CONTINUE
WRITE(12, 9)
9 FORMAT(15X, '**')
30 CONTINUE
CALL TIMPLOT(1000, U1, U2, U3, TIME)
RETURN
END
SUBROUTINE TAUPLOT(ND, VX, VY, VZ, TAU)
DIMENSION VX(5000), VY(5000), VZ(5000), TAU(5000),
$XO(2), YO(2), Y1(2), Y2(2), FXX(5000), FYY(5000), FYZ(5000)
XO(1) = 0.0
XO(2) = FLOAT(ND) / 50.0
YO(1) = 0.0
YO(2) = 0.0
Y1(1) = 8.0 / 3.0
Y1(2) = Y1(1)
Y2(1) = -Y1(1)
Y2(2) = -Y1(1)
DO 20 I = 1, ND
FYX(I) = Y1(1) + VX(I) / 3.0
FYY(I) = YO(1) + VY(I) / 3.0
FYZ(I) = Y2(1) + VZ(I) / 3.0
20 CONTINUE
CALL RESET('ALL')
CALL MX1ALF('STANDARD', '%')
CALL MX2ALF('L/CSTD', '#')
CALL MX3ALF('INSTR', '&')
CALL MX4ALF('MATH', ')')
CALL MX5ALF('SPEC', '*')
CALL MX6ALF('L/CGREEK', '!')
CALL SWISSL
CALL SHDCHR(90., 1., 0.03, 1)
CALL PAGE(11.0, 8.5)
CALL NOBRDR
CALL HWROT('COMIC')
CALL HWSCAL('SCREEN')
CALL XREVTK
CALL YREVTK
CALL AREA2D(8.0, 6.0)
CALL HEIGHT(.2)
CALL YAXANG(0.0)
CALL XNAME('!T&E.7H.5%+&EXHX%'.17)
CALL YNAME(' ',1)
X=-0.3
Y=5.00-.07
DY=1.00
CALL MESSAG('&H.7%0&HX%',10,X,Y)
CALL MESSAG('&P1#U&U1*,&B2L1.1!S&LX',22,-0.75,5.05)
Y=Y-DY
CALL MESSAG('&H.7%4&HX%',10,X,Y)
CALL MESSAG('&P1#V&U1*,&B2L1.1!S&LX',22,-0.75,3.05)
Y=Y-2.0*DY
CALL MESSAG('&H.7%4&HX%',10,X,Y)
CALL MESSAG('&P1#W&U1*,&B2L1.1!S&LX',22,-0.75,1.05)
Y=Y-DY
CALL MESSAG('&H.7%0&HX%',10,X,Y)
CALL YINTAX
CALL XINTAX
CALL XTICKS(5)
CALL YTICKS(6)
CALL GRAF(0.0,5.0,XO(2),-4.0,4.0,4.0)
CALL FRAME
CALL CURVE(XO,Y0,2.0)
CALL CURVE(XO,Y1,2.0)
CALL CURVE(XO,Y2,2.0)
CALL THKCRV(.02)
CALL CURVE(TAU, FYX, ND, O)
CALL CURVE(TAU, FYY, ND, O)
CALL CURVE(TAU, FYZ, ND, O)
CALL ENDPL(0)
RETURN
END
SUBROUTINE TIMPLOT(NDT,U1,U2,U3,TIME)
DIMENSION U1(6000),U2(6000),U3(5000),TIME(5000).
$X0(2),Y0(2),Y1(2),Y2(2),FYX(5000),FYY(5000),FYZ(5000)
X0(1)=0.0
X0(2)=40.0
Y0(1)=0.0
Y0(2)=0.0
Y1(1)=2.0/3.0
Y1(2)=Y1(1)
Y2(1)=-Y1(1)
Y2(2)=-Y1(1)
DO 20 I=1,NDT
FYX(I)=Y1(I)+U3(I)/3.0
FYY(I)=Y0(I)+U1(I)/3.0
FYZ(I)=Y2(I)+U2(I)/3.0
20 CONTINUE
CALL RESET('ALL')
CALL MX1ALF('STANDARD','%')
CALL MX2ALF('L/CSTD','#')
CALL MX3ALF('INSTR','&')
CALL MX4ALF('MATH','@')
CALL MX5ALF('SPEC','*')
CALL MX6ALF('L/CGREEK','!')
CALL SWISSL
CALL SHDCHR(90,.1,.003,1)
CALL PAGE(11.0,8.5)
CALL NOBDR
CALL HWROT('COMIC')
CALL HWSCL('SCREEN')
CALL XREVTK
CALL YREVTK
CALL AREA2D(8.0,6.0)
CALL HEIGHT(.2)
CALL YAXANG(O.O)
CALL XNAME(’#T&E.7H.5%+&EXHX%’,17)
CALL YNAME(’ ’,1)
X=-.3
Y=.5OO-.07
DY=1.OO
CALL MESSAG(’&H.7%O&HX%’,10,X,Y)
CALL MESSAG(’&H.7#NODE&A#3&HX%’,17,.4.8,.45)
Y=Y-DY
CALL MESSAG(’&H.7%1&HX%’,10,X,Y)
CALL MESSAG(’&P1A.2P2#U*,&A.2U1A-.2L.3U2B2L1.7%U&LX’,
$38,-.095,3.55)
CALL MESSAG(’&H.7#NODE&A#1&HX%’,17,.4.8,.245)
Y=Y-2.O*DY
CALL MESSAG(’&H.7%1&HX%’,10,X,Y)
CALL MESSAG(’&H.7#NODE&A#2&HX%’,17,.4.8,.45)
Y=Y-DY
CALL MESSAG(’&H.7%O&HX%’,10,X,Y)
CALL YINTAX
CALL XINTAX
CALL XTICKS(5)
CALL YTICKS(6)
CALL GRAF(0.0,5.0,XO(2),-1.0,1.0,1.0)
CALL FRAME
CALL CURVE(XO,Y0,2.0)
CALL CURVE(XO,Y1,2.0)
CALL CURVE(XO,Y2,2.0)
CALL THKCRV(.02)
CALL CURVE(TIME,FYX,NDT,O)
CALL CURVE(TIME,FYY,NDT,O)
CALL CURVE(TIME,FYZ,NDT,O)
CALL ENDPL(O)
RETURN
END
GENERAL INPUT

SEED = 0.500
NIT = 50
NCP = 1000
UT = 3.142
H0 = 0.200
XSO = -1.000
HSO = 2.000
USO = 1.000
SIGX = 0.250
SIGY = 0.150
SIGZ = 0.150

NODAL INPUT

*NODE THETA R H UB UW *
* 1 0.0000 1.0000 2.0000 1.0000 1.0000 *
* 2 180.0000 1.0000 2.0000 1.0000 1.0000 *
NORMAZIIZED TAU-SERIES

SIGMAX = 0.9884
SIGMAY = 0.9820
SIGMAZ = 0.9922

<table>
<thead>
<tr>
<th>TAU</th>
<th>VX</th>
<th>VY</th>
<th>VZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.37332</td>
<td>-0.69509</td>
<td>-1.24651</td>
</tr>
<tr>
<td>0.04</td>
<td>0.63777</td>
<td>-0.72212</td>
<td>-1.58796</td>
</tr>
<tr>
<td>0.06</td>
<td>0.26754</td>
<td>-1.15913</td>
<td>-1.36602</td>
</tr>
<tr>
<td>0.08</td>
<td>0.10705</td>
<td>-0.58196</td>
<td>-1.29311</td>
</tr>
<tr>
<td>0.10</td>
<td>0.19798</td>
<td>-0.26178</td>
<td>-1.19314</td>
</tr>
<tr>
<td>0.12</td>
<td>0.29750</td>
<td>0.01191</td>
<td>-1.26982</td>
</tr>
<tr>
<td>0.14</td>
<td>0.41181</td>
<td>-0.04261</td>
<td>-1.45596</td>
</tr>
<tr>
<td>0.16</td>
<td>0.52025</td>
<td>0.01815</td>
<td>-1.38294</td>
</tr>
<tr>
<td>0.18</td>
<td>0.41273</td>
<td>-0.03464</td>
<td>-1.06189</td>
</tr>
<tr>
<td>0.20</td>
<td>0.60922</td>
<td>0.33550</td>
<td>-0.82090</td>
</tr>
<tr>
<td>0.22</td>
<td>0.38563</td>
<td>-0.26088</td>
<td>-1.03643</td>
</tr>
<tr>
<td>0.24</td>
<td>0.15804</td>
<td>-0.56701</td>
<td>-1.54245</td>
</tr>
<tr>
<td>0.26</td>
<td>0.17182</td>
<td>-0.63027</td>
<td>-1.29703</td>
</tr>
<tr>
<td>0.28</td>
<td>0.10774</td>
<td>-0.20067</td>
<td>-1.40332</td>
</tr>
<tr>
<td>0.30</td>
<td>0.15182</td>
<td>-0.73085</td>
<td>-1.55976</td>
</tr>
<tr>
<td>0.32</td>
<td>0.28635</td>
<td>-0.55088</td>
<td>-0.99271</td>
</tr>
<tr>
<td>0.34</td>
<td>0.08478</td>
<td>0.10643</td>
<td>-0.64033</td>
</tr>
<tr>
<td>0.36</td>
<td>-0.13336</td>
<td>0.13828</td>
<td>-0.44343</td>
</tr>
<tr>
<td>0.38</td>
<td>-0.08352</td>
<td>0.23518</td>
<td>-1.35516</td>
</tr>
<tr>
<td>0.40</td>
<td>0.06587</td>
<td>0.70043</td>
<td>-1.71169</td>
</tr>
<tr>
<td>0.42</td>
<td>0.10215</td>
<td>0.97482</td>
<td>-1.78938</td>
</tr>
<tr>
<td>0.44</td>
<td>0.09660</td>
<td>0.98281</td>
<td>-1.69888</td>
</tr>
<tr>
<td>0.46</td>
<td>-0.24217</td>
<td>0.95460</td>
<td>-1.65827</td>
</tr>
<tr>
<td>0.48</td>
<td>-0.64232</td>
<td>1.53277</td>
<td>-1.35484</td>
</tr>
<tr>
<td>0.50</td>
<td>-0.22485</td>
<td>1.36857</td>
<td>-1.08471</td>
</tr>
<tr>
<td>0.52</td>
<td>-0.01709</td>
<td>1.10538</td>
<td>-1.31461</td>
</tr>
<tr>
<td>0.54</td>
<td>-0.03725</td>
<td>1.33098</td>
<td>-1.48904</td>
</tr>
<tr>
<td>0.56</td>
<td>-0.12834</td>
<td>1.02669</td>
<td>-1.62649</td>
</tr>
<tr>
<td>0.58</td>
<td>-0.40085</td>
<td>1.38394</td>
<td>-1.71746</td>
</tr>
<tr>
<td>0.60</td>
<td>-0.34931</td>
<td>1.40100</td>
<td>-1.70282</td>
</tr>
<tr>
<td>0.62</td>
<td>-0.42870</td>
<td>0.70140</td>
<td>-1.40305</td>
</tr>
<tr>
<td>0.64</td>
<td>-0.67972</td>
<td>0.78570</td>
<td>-1.29736</td>
</tr>
<tr>
<td>0.66</td>
<td>-1.01550</td>
<td>1.34336</td>
<td>-1.16988</td>
</tr>
<tr>
<td>0.68</td>
<td>-1.03660</td>
<td>0.44165</td>
<td>-1.05963</td>
</tr>
<tr>
<td>0.70</td>
<td>-1.20016</td>
<td>-0.10771</td>
<td>-1.06437</td>
</tr>
<tr>
<td>0.72</td>
<td>-0.96281</td>
<td>0.37933</td>
<td>-1.20335</td>
</tr>
<tr>
<td>0.74</td>
<td>-1.01830</td>
<td>0.99451</td>
<td>-1.48014</td>
</tr>
<tr>
<td>0.76</td>
<td>-0.85504</td>
<td>1.52575</td>
<td>-1.22055</td>
</tr>
<tr>
<td>0.78</td>
<td>-0.94414</td>
<td>1.40130</td>
<td>-0.81961</td>
</tr>
<tr>
<td>0.80</td>
<td>-0.85580</td>
<td>1.87830</td>
<td>-0.98856</td>
</tr>
</tbody>
</table>
NODE 1 TIME-SERIES

SIGMAU= 0.2458 **SIMULATED VALUES**

SIGMAV= 0.1502 **OF**

SIGMAW= 0.1511 **SIGMA.**

TIME-SERIES

<table>
<thead>
<tr>
<th>TIME</th>
<th>THETA</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>7.20</td>
<td>0.11357</td>
<td>0.12456</td>
<td>-0.02814</td>
</tr>
<tr>
<td>0.08</td>
<td>14.40</td>
<td>0.15082</td>
<td>0.07614</td>
<td>-0.03858</td>
</tr>
<tr>
<td>0.12</td>
<td>21.60</td>
<td>0.14508</td>
<td>0.06319</td>
<td>0.03130</td>
</tr>
<tr>
<td>0.16</td>
<td>28.80</td>
<td>0.20446</td>
<td>0.01531</td>
<td>-0.11339</td>
</tr>
<tr>
<td>0.20</td>
<td>36.00</td>
<td>0.20824</td>
<td>-0.09096</td>
<td>-0.15517</td>
</tr>
<tr>
<td>0.24</td>
<td>43.20</td>
<td>0.14936</td>
<td>-0.15022</td>
<td>-0.10518</td>
</tr>
<tr>
<td>0.28</td>
<td>50.40</td>
<td>0.11071</td>
<td>-0.10533</td>
<td>-0.19665</td>
</tr>
<tr>
<td>0.32</td>
<td>57.60</td>
<td>0.02922</td>
<td>-0.08210</td>
<td>-0.19234</td>
</tr>
<tr>
<td>0.36</td>
<td>64.80</td>
<td>0.09211</td>
<td>-0.00329</td>
<td>-0.20780</td>
</tr>
<tr>
<td>0.40</td>
<td>72.00</td>
<td>0.10919</td>
<td>-0.00343</td>
<td>-0.17005</td>
</tr>
<tr>
<td>0.44</td>
<td>79.20</td>
<td>0.12116</td>
<td>0.00048</td>
<td>-0.14115</td>
</tr>
<tr>
<td>0.48</td>
<td>86.40</td>
<td>0.04232</td>
<td>-0.08279</td>
<td>-0.22762</td>
</tr>
<tr>
<td>0.52</td>
<td>93.60</td>
<td>0.04278</td>
<td>-0.09407</td>
<td>-0.19637</td>
</tr>
<tr>
<td>0.56</td>
<td>100.80</td>
<td>0.03403</td>
<td>-0.05864</td>
<td>-0.20344</td>
</tr>
<tr>
<td>0.60</td>
<td>108.00</td>
<td>0.03052</td>
<td>-0.04451</td>
<td>-0.20693</td>
</tr>
<tr>
<td>0.64</td>
<td>115.20</td>
<td>0.03301</td>
<td>-0.05455</td>
<td>-0.20445</td>
</tr>
<tr>
<td>0.68</td>
<td>122.40</td>
<td>0.04122</td>
<td>-0.08757</td>
<td>-0.19628</td>
</tr>
<tr>
<td>0.72</td>
<td>129.60</td>
<td>0.04042</td>
<td>-0.08755</td>
<td>-0.22169</td>
</tr>
<tr>
<td>0.76</td>
<td>136.80</td>
<td>0.08994</td>
<td>-0.04435</td>
<td>-0.16409</td>
</tr>
<tr>
<td>0.80</td>
<td>144.00</td>
<td>0.13730</td>
<td>0.03337</td>
<td>-0.13418</td>
</tr>
<tr>
<td>0.84</td>
<td>151.20</td>
<td>0.12888</td>
<td>0.00238</td>
<td>-0.20533</td>
</tr>
<tr>
<td>0.88</td>
<td>158.40</td>
<td>0.08018</td>
<td>0.00013</td>
<td>-0.19614</td>
</tr>
<tr>
<td>0.92</td>
<td>165.60</td>
<td>0.03170</td>
<td>-0.07686</td>
<td>-0.19071</td>
</tr>
<tr>
<td>0.96</td>
<td>172.80</td>
<td>0.14711</td>
<td>-0.11705</td>
<td>-0.23116</td>
</tr>
<tr>
<td>1.00</td>
<td>180.00</td>
<td>0.10086</td>
<td>-0.14398</td>
<td>-0.18835</td>
</tr>
<tr>
<td>1.04</td>
<td>187.20</td>
<td>0.15574</td>
<td>-0.14604</td>
<td>-0.10734</td>
</tr>
<tr>
<td>1.08</td>
<td>194.40</td>
<td>0.20849</td>
<td>-0.08201</td>
<td>-0.19131</td>
</tr>
<tr>
<td>1.12</td>
<td>201.60</td>
<td>0.21016</td>
<td>-0.07985</td>
<td>-0.15407</td>
</tr>
<tr>
<td>1.16</td>
<td>208.80</td>
<td>0.24383</td>
<td>0.03039</td>
<td>-0.13138</td>
</tr>
<tr>
<td>1.20</td>
<td>216.00</td>
<td>0.16442</td>
<td>-0.00496</td>
<td>-0.06721</td>
</tr>
<tr>
<td>1.24</td>
<td>223.20</td>
<td>0.18042</td>
<td>-0.00444</td>
<td>0.02586</td>
</tr>
<tr>
<td>1.28</td>
<td>230.40</td>
<td>0.18192</td>
<td>0.05262</td>
<td>0.03020</td>
</tr>
<tr>
<td>1.32</td>
<td>237.60</td>
<td>0.13362</td>
<td>0.06720</td>
<td>0.03475</td>
</tr>
<tr>
<td>1.36</td>
<td>244.80</td>
<td>0.14573</td>
<td>0.06719</td>
<td>0.04911</td>
</tr>
<tr>
<td>1.40</td>
<td>252.00</td>
<td>0.14941</td>
<td>0.06719</td>
<td>0.05347</td>
</tr>
<tr>
<td>1.44</td>
<td>259.20</td>
<td>0.14423</td>
<td>0.06719</td>
<td>0.04733</td>
</tr>
<tr>
<td>1.48</td>
<td>266.40</td>
<td>0.13447</td>
<td>0.06823</td>
<td>0.03161</td>
</tr>
<tr>
<td>1.52</td>
<td>273.60</td>
<td>0.19897</td>
<td>0.04454</td>
<td>0.02945</td>
</tr>
<tr>
<td>1.56</td>
<td>280.80</td>
<td>0.16451</td>
<td>-0.01218</td>
<td>-0.00680</td>
</tr>
<tr>
<td>1.60</td>
<td>288.00</td>
<td>0.21221</td>
<td>0.01828</td>
<td>-0.11693</td>
</tr>
</tbody>
</table>

37
NODE 2

TIME-SERIES

SIGMAU = 0.2464

SIGMAV = 0.1455

SIGMAW = 0.1427

* SIMULATED VALUES OF SIGMA.*

<table>
<thead>
<tr>
<th>TIME</th>
<th>THETA</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>187.20</td>
<td>0.21991</td>
<td>0.03037</td>
<td>-0.03176</td>
</tr>
<tr>
<td>0.08</td>
<td>194.40</td>
<td>0.21492</td>
<td>0.06500</td>
<td>0.06015</td>
</tr>
<tr>
<td>0.12</td>
<td>201.60</td>
<td>0.28584</td>
<td>0.23727</td>
<td>-0.00278</td>
</tr>
<tr>
<td>0.16</td>
<td>208.80</td>
<td>0.31905</td>
<td>0.25886</td>
<td>0.00538</td>
</tr>
<tr>
<td>0.20</td>
<td>216.00</td>
<td>0.26154</td>
<td>0.15101</td>
<td>-0.09355</td>
</tr>
<tr>
<td>0.24</td>
<td>223.20</td>
<td>0.27569</td>
<td>0.14645</td>
<td>-0.12770</td>
</tr>
<tr>
<td>0.28</td>
<td>230.40</td>
<td>0.22308</td>
<td>0.16625</td>
<td>-0.15416</td>
</tr>
<tr>
<td>0.32</td>
<td>237.60</td>
<td>0.19399</td>
<td>0.18274</td>
<td>-0.11729</td>
</tr>
<tr>
<td>0.36</td>
<td>244.80</td>
<td>0.20439</td>
<td>0.15600</td>
<td>-0.12203</td>
</tr>
<tr>
<td>0.40</td>
<td>252.00</td>
<td>0.20755</td>
<td>0.14788</td>
<td>-0.12348</td>
</tr>
<tr>
<td>0.44</td>
<td>259.20</td>
<td>0.20310</td>
<td>0.15931</td>
<td>-0.12145</td>
</tr>
<tr>
<td>0.48</td>
<td>266.40</td>
<td>0.19389</td>
<td>0.18691</td>
<td>-0.11882</td>
</tr>
<tr>
<td>0.52</td>
<td>273.60</td>
<td>0.23655</td>
<td>0.15770</td>
<td>-0.16544</td>
</tr>
<tr>
<td>0.56</td>
<td>280.80</td>
<td>0.26701</td>
<td>0.15067</td>
<td>-0.12029</td>
</tr>
<tr>
<td>0.60</td>
<td>288.00</td>
<td>0.29612</td>
<td>0.16421</td>
<td>-0.02885</td>
</tr>
<tr>
<td>0.64</td>
<td>295.20</td>
<td>0.28846</td>
<td>0.27682</td>
<td>-0.00346</td>
</tr>
<tr>
<td>0.68</td>
<td>302.40</td>
<td>0.21369</td>
<td>0.05464</td>
<td>0.06677</td>
</tr>
<tr>
<td>0.72</td>
<td>309.60</td>
<td>0.27637</td>
<td>0.04260</td>
<td>-0.05652</td>
</tr>
<tr>
<td>0.76</td>
<td>316.80</td>
<td>0.05629</td>
<td>0.06243</td>
<td>-0.04101</td>
</tr>
<tr>
<td>0.80</td>
<td>324.00</td>
<td>0.13773</td>
<td>0.11030</td>
<td>-0.02236</td>
</tr>
<tr>
<td>0.84</td>
<td>331.20</td>
<td>0.14529</td>
<td>-0.00960</td>
<td>-0.06586</td>
</tr>
<tr>
<td>0.88</td>
<td>338.40</td>
<td>0.18605</td>
<td>0.05144</td>
<td>0.03008</td>
</tr>
<tr>
<td>0.92</td>
<td>345.60</td>
<td>0.23635</td>
<td>0.02753</td>
<td>-0.12796</td>
</tr>
<tr>
<td>0.96</td>
<td>352.80</td>
<td>0.20844</td>
<td>-0.08121</td>
<td>-0.19527</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.10086</td>
<td>-0.14398</td>
<td>-0.16835</td>
</tr>
<tr>
<td>1.04</td>
<td>7.20</td>
<td>0.02979</td>
<td>-0.08089</td>
<td>-0.19197</td>
</tr>
<tr>
<td>1.08</td>
<td>14.40</td>
<td>0.12422</td>
<td>0.00100</td>
<td>-0.19698</td>
</tr>
<tr>
<td>1.12</td>
<td>21.60</td>
<td>0.04021</td>
<td>-0.08698</td>
<td>-0.22389</td>
</tr>
<tr>
<td>1.16</td>
<td>28.80</td>
<td>0.06938</td>
<td>-0.07831</td>
<td>-0.14659</td>
</tr>
<tr>
<td>1.20</td>
<td>36.00</td>
<td>0.00506</td>
<td>0.08375</td>
<td>-0.24042</td>
</tr>
<tr>
<td>1.24</td>
<td>43.20</td>
<td>-0.07191</td>
<td>0.15304</td>
<td>-0.24357</td>
</tr>
<tr>
<td>1.28</td>
<td>50.40</td>
<td>-0.00560</td>
<td>0.17470</td>
<td>-0.20407</td>
</tr>
<tr>
<td>1.32</td>
<td>57.60</td>
<td>-0.09882</td>
<td>0.20787</td>
<td>-0.25738</td>
</tr>
<tr>
<td>1.36</td>
<td>64.80</td>
<td>-0.14612</td>
<td>0.11306</td>
<td>-0.20062</td>
</tr>
<tr>
<td>1.40</td>
<td>72.00</td>
<td>-0.25797</td>
<td>0.09650</td>
<td>-0.16264</td>
</tr>
<tr>
<td>1.44</td>
<td>79.20</td>
<td>-0.26698</td>
<td>0.02454</td>
<td>-0.17127</td>
</tr>
<tr>
<td>1.48</td>
<td>86.40</td>
<td>-0.25389</td>
<td>0.14462</td>
<td>-0.21997</td>
</tr>
<tr>
<td>1.52</td>
<td>93.60</td>
<td>-0.21578</td>
<td>0.22492</td>
<td>-0.18501</td>
</tr>
<tr>
<td>1.56</td>
<td>100.80</td>
<td>-0.22617</td>
<td>0.21846</td>
<td>-0.14958</td>
</tr>
<tr>
<td>1.60</td>
<td>108.00</td>
<td>-0.23105</td>
<td>0.21437</td>
<td>-0.13639</td>
</tr>
</tbody>
</table>

38
NODE 3 TIME-SERIES

SIGMAU = 0.2471 SIMULATED VALUES
SIGMAV = 0.1473 OF
SIGMAW = 0.1488 SIGMA.

- TIME-SERIES -

<table>
<thead>
<tr>
<th>TIME</th>
<th>THETA</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>7.20</td>
<td>0.09333</td>
<td>-0.10426</td>
<td>-0.18698</td>
</tr>
<tr>
<td>0.08</td>
<td>14.40</td>
<td>0.15944</td>
<td>-0.10832</td>
<td>-0.23519</td>
</tr>
<tr>
<td>0.12</td>
<td>21.60</td>
<td>0.06689</td>
<td>-0.17387</td>
<td>-0.20490</td>
</tr>
<tr>
<td>0.16</td>
<td>28.80</td>
<td>0.02876</td>
<td>-0.08730</td>
<td>-0.19397</td>
</tr>
<tr>
<td>0.20</td>
<td>36.00</td>
<td>0.04949</td>
<td>-0.03927</td>
<td>-0.17897</td>
</tr>
<tr>
<td>0.24</td>
<td>43.20</td>
<td>0.07437</td>
<td>0.00179</td>
<td>-0.19047</td>
</tr>
<tr>
<td>0.28</td>
<td>50.40</td>
<td>0.10295</td>
<td>-0.06393</td>
<td>-0.21839</td>
</tr>
<tr>
<td>0.32</td>
<td>57.60</td>
<td>0.13006</td>
<td>0.00272</td>
<td>-0.20744</td>
</tr>
<tr>
<td>0.36</td>
<td>64.80</td>
<td>0.10318</td>
<td>-0.00520</td>
<td>-0.15929</td>
</tr>
<tr>
<td>0.40</td>
<td>72.00</td>
<td>0.15231</td>
<td>0.05032</td>
<td>-0.12314</td>
</tr>
<tr>
<td>0.44</td>
<td>79.20</td>
<td>0.09641</td>
<td>-0.03913</td>
<td>-0.15546</td>
</tr>
<tr>
<td>0.48</td>
<td>86.40</td>
<td>0.03951</td>
<td>-0.08505</td>
<td>-0.23137</td>
</tr>
<tr>
<td>0.52</td>
<td>93.60</td>
<td>0.04295</td>
<td>-0.09454</td>
<td>-0.19456</td>
</tr>
<tr>
<td>0.56</td>
<td>100.80</td>
<td>0.02694</td>
<td>-0.03010</td>
<td>-0.21050</td>
</tr>
<tr>
<td>0.60</td>
<td>108.00</td>
<td>0.03795</td>
<td>-0.10963</td>
<td>-0.23396</td>
</tr>
<tr>
<td>0.64</td>
<td>115.20</td>
<td>0.07159</td>
<td>-0.08263</td>
<td>-0.14891</td>
</tr>
<tr>
<td>0.68</td>
<td>122.40</td>
<td>0.02120</td>
<td>0.01596</td>
<td>-0.09605</td>
</tr>
<tr>
<td>0.72</td>
<td>129.60</td>
<td>-0.03334</td>
<td>0.02074</td>
<td>-0.06652</td>
</tr>
<tr>
<td>0.76</td>
<td>136.80</td>
<td>-0.02088</td>
<td>0.03528</td>
<td>-0.20327</td>
</tr>
<tr>
<td>0.80</td>
<td>144.00</td>
<td>0.01646</td>
<td>0.10506</td>
<td>-0.25675</td>
</tr>
<tr>
<td>0.84</td>
<td>151.20</td>
<td>0.02554</td>
<td>0.14622</td>
<td>-0.26841</td>
</tr>
<tr>
<td>0.88</td>
<td>158.40</td>
<td>0.02415</td>
<td>0.14742</td>
<td>-0.25483</td>
</tr>
<tr>
<td>0.92</td>
<td>165.60</td>
<td>-0.06054</td>
<td>0.14319</td>
<td>-0.24874</td>
</tr>
<tr>
<td>0.96</td>
<td>172.80</td>
<td>-0.16057</td>
<td>0.22991</td>
<td>-0.20323</td>
</tr>
<tr>
<td>1.00</td>
<td>180.00</td>
<td>-0.05622</td>
<td>0.20529</td>
<td>-0.16271</td>
</tr>
<tr>
<td>1.04</td>
<td>187.20</td>
<td>-0.00428</td>
<td>0.16581</td>
<td>-0.19719</td>
</tr>
<tr>
<td>1.08</td>
<td>194.40</td>
<td>-0.00931</td>
<td>0.19964</td>
<td>-0.22335</td>
</tr>
<tr>
<td>1.12</td>
<td>201.60</td>
<td>-0.03208</td>
<td>0.15401</td>
<td>-0.24397</td>
</tr>
<tr>
<td>1.16</td>
<td>208.80</td>
<td>-0.10021</td>
<td>0.20759</td>
<td>-0.25762</td>
</tr>
<tr>
<td>1.20</td>
<td>216.00</td>
<td>-0.08733</td>
<td>0.21015</td>
<td>-0.25542</td>
</tr>
<tr>
<td>1.24</td>
<td>223.20</td>
<td>-0.10717</td>
<td>0.10522</td>
<td>-0.21046</td>
</tr>
<tr>
<td>1.28</td>
<td>230.40</td>
<td>-0.16993</td>
<td>0.11785</td>
<td>-0.19461</td>
</tr>
<tr>
<td>1.32</td>
<td>237.60</td>
<td>-0.25387</td>
<td>0.20150</td>
<td>-0.17548</td>
</tr>
<tr>
<td>1.36</td>
<td>244.80</td>
<td>-0.25915</td>
<td>0.06626</td>
<td>-0.15895</td>
</tr>
<tr>
<td>1.40</td>
<td>252.00</td>
<td>-0.30004</td>
<td>-0.01615</td>
<td>-0.15966</td>
</tr>
<tr>
<td>1.44</td>
<td>259.20</td>
<td>-0.24071</td>
<td>0.05889</td>
<td>-0.18050</td>
</tr>
<tr>
<td>1.48</td>
<td>266.40</td>
<td>-0.25457</td>
<td>0.14917</td>
<td>-0.22202</td>
</tr>
<tr>
<td>1.52</td>
<td>273.60</td>
<td>-0.21376</td>
<td>0.22886</td>
<td>-0.18309</td>
</tr>
<tr>
<td>1.56</td>
<td>280.80</td>
<td>-0.23603</td>
<td>0.21020</td>
<td>-0.12295</td>
</tr>
<tr>
<td>1.60</td>
<td>288.00</td>
<td>-0.21395</td>
<td>0.28174</td>
<td>-0.14828</td>
</tr>
</tbody>
</table>

39
DISTRIBUTION

Alcoa Technical center (5)
Aluminum Company of America
Alcoa Center, PA 15069
Attn: D. K. Ai
J. T. Huang
J. R. Jombock
M. Klingensmith
J. L. Prohaska

Alternative Sources of Energy
Milaca, MN 56353
Attn: L. Stoiaiken

Amarillo College
Amarillo, TX 79100
Attn: E. Gilmore

American Wind Energy Association
1516 King Street
Alexandria, VA 22314

Arizona State University
University Library
Tempe, AZ 85281
Attn: M. E. Beecher

Dr. A. S. Barker
Trinity Western
7600 Glover Road
Langley, BC
CANADA V3A 4R9

Battelle-Pacific Northwest Laboratory
PO Box 999
Richland, WA 99352
Attn: L. Wendell

Bechtel Group, Inc.
PO Box 3965
San Francisco, CA 94119
Attn: B. Lessley

Dr. George Bergeles
Dept. of Mechanical Engineering
National Technical University
42, Patission Street
Athens, GREECE

Bonneville Power Administration
PO Box 3621
Portland, OR 97208
Attn: N. Butler

Burns and Roe, Inc.
800 Kinderkamack Road
Gradell, NJ 07649
Attn: G. A. Fontana

Canadian Standards Association
178 Rexdale Blvd.
Rexdale, Ontario, M9W 1R3
CANADA
Attn: T. Watson

Mark Chappel
Division of Energy
National Research Council
of Canada
Montreal Road
Ottawa, Ontario
CANADA K1A 0R6

Professor V. A. L. Chasteau
School of Engineering
University of Auckland
Private Bag
Auckland, NEW ZEALAND

Colorado State University
Dept. of Civil Engineering
Fort Collins, CO 80521
Attn: R. N. Neron

Commonwealth Electric Co.
Box 368
Vineyard Haven, MA 02568
Attn: D. W. Dunham

Gale B. Curtis
Curtis Associates
3089 Oro Blanco Drive
Colorado Springs, CO 80917
Indal Technologies, Inc. (2)
3570 Hawkestone Road
Mississauga, Ontario
CANADA L5C 2V8
Attn: D. Malcolm
 C. Wood

Institut de Recherche d’Hydro-Quebec
1800, Montee Ste-Julie
Varennes, Quebec, JOL 2PO
CANADA
Attn: Gaston Beaulieu
 Bernard Nasse

Iowa State University
Agricultural Engineering, Room 213
Ames, IA 50010
Attn: L. H. Soderholm

K. Jackson
West Wind Industries
P.O. Box 1705
Davis, CA 95617

W. Jackson
McAllester Financial
1816 Summit
W. Lafayette, IN 47906

Kaiser Aluminum and Chemical Sales, Inc.
14200 Cottage Grove Avenue
Dolton, IL 60419
Attn: A. A. Hagman

Kaiser Aluminum and Chemical Sales, Inc.
6177 Sunol Blvd.
Pleasanton, CA 94566
Attn: D. D. Doerr

Kansas State University
Electrical Engineering Department
Manhattan, KS 66506
Attn: Dr. G. L. Johnson

R. E. Kelland
The College of Trades and Technology
P.O. Box 1693
Prince Philip Drive
St. John’s, Newfoundland, A1C 5P7
CANADA

KW Control Systems, Inc.
RD No.4, Box 914C
South Plank Road
Middletown, NY 10940
Attn: R. H. Klein

Kalman Nagy Lehoczky
Cort Adelers GT. 30
Oslo 2, NORWAY

L. K. Liljergre
1260 S.E. Walnut No.5
Tustin, CA 92680

L. Liljidalh
Building 005, Room 304
Barc-West
Beltsville, MD 20705

Olle Ljungstrom
FFA, The Aeronautical Research Institute
Box 11021
S-16111 Bromma, SWEDEN

Robert Lynette
R. Lynette and Assoc., Inc.
15921 SE 46th Way
Bellevue, WA 98006

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
Attn: Professor N. D. Ham
 W. L. Harris, Aero/Astro Dept.

H. S. Matsuda
Composite Materials Laboratory
Pioneering R and D Laboratories
Toray Industries, Inc.
Sonoyama, Otsu, Shiga, JAPAN 520
Ion Paraschivoiu
Department of Mechanical Engineering
Ecole Polytechnique
CP 6079
Succursale A
Montreal H3C 3A7
CANADA

Riso National Laboratory
Postbox 49
DK-4000 Roskilde
DENMARK
Attn: Troels Friis Pedersen
Heige Petersen

Jacques Plante
Hydro Quebec
Place Dupuis Ile etage
855 est rue Ste-Catherine
Montreal, Quebec
CANADA H2L 4P5

The Power Company, Inc.
PO Box 221
Genesee Depot, WI 53217
Attn: A. A. Nedd

Power Technologies Inc.
PO Box 1058
Schenectady, NY 12301-1058
Attn: Eric N. Hinrichsen

Public Service Co. of New Hampshire
1000 Elm Street
Manchester, NH 03105
Attn: D. L. C. Frederick

Public Service Company of New Mexico
PO Box 2267
Albuquerque, NM 87103
Attn: N. Lechner

RANN, Inc.
260 Sheridan Ave., Suite 414
Palo Alto, CA 94306
Attn: A. J. Eggers, Jr.

The Resources Agency
Department of Water Resources
Energy Division
PO Box 388
Sacramento, CA 95802
Attn: R. G. Ferreira
Dr. R. Ganesh Rajagopalan, Asst. Prof.
Aerospace Engineering Department
Iowa State University
404 Town Engineering Bldg.
Ames, IA 50011

Reynolds Metals Company
Mill Products Division
6601 West Broad Street
Richmond, VA 23261
Attn: G. E. Lennox

R. G. Richards
Atlantic Wind Test Site
PO Box 189
Tignish P.E.I., COB 2B0
CANADA

A. Robb
Memorial University of Newfoundland
Faculty of Engineering and Applied Sciences
St. John's Newfoundland, A1C 5S7
CANADA

Solar Energy Research Institute
1617 Cole Boulevard
Golden, CO 80401
Attn: R. W. Thresher

Dr. Ing. Hans Ruscheweyh
Institut fur Leichbau
Technische Hochschule Aachen
Wullnerstrasse 7
FEDERAL REPUBLIC OF GERMANY

Beatrice de Saint Louvent
Etablissement d'Etudes et de Recherches
Meteorologiques
77 Rue de Serves
92106 Boulogne-Billancourt Cedex
FRANCE

Gwen Schreiner
Librarian
National Atomic Museum
Albuquerque, NM 87185

Arnan Seginer
Professor of Aerodynamics
Technion-Israel Institute of Technology
Department of Aeronautical Engineering
Haifa
ISRAEL

Mr. Farrell Smith Seiler, Editor
Wind Energy Abstracts
PO Box 3870
Bozeman, MT 59772-3870

David Sharpe
Dept. of Aeronautical Engineering
Queen Mary College
Mile End Road
London, E1 4NS
UNITED KINGDOM

Kent Smith
Instituto Tecnologico Costa Rico
Apartado 159 Cartago
COSTA RICA

Bent Sorenson
Roskilde University Center
Energy Group, Bldg. 17.2
INFUFA
PO Box 260
DK-400 Roskilde
DENMARK

Peter South
ADECON
32 Rivalda Road
Weston, Ontario, M9N 2N3
CANADA

Southern California Edison
Research and Development Dept., Room 497
PO Box 800
Rosemead, CA 91770
Attn: R. L. Scheffler

G. Stacey
The University of Reading
Department of Engineering
Whiteknights, Reading, RG6 2AY
ENGLAND
<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3160</td>
<td>J. E. Mitchell (15)</td>
</tr>
<tr>
<td>3161</td>
<td>P. S. Wilson</td>
</tr>
<tr>
<td>6000</td>
<td>D. L. Hartley</td>
</tr>
<tr>
<td>6200</td>
<td>V. L. Dugan</td>
</tr>
<tr>
<td>6225</td>
<td>H. W. Dodd (50)</td>
</tr>
<tr>
<td>6225</td>
<td>T. D. Ashwill</td>
</tr>
<tr>
<td>6225</td>
<td>D. E. Berg</td>
</tr>
<tr>
<td>6225</td>
<td>L. R. Gallo</td>
</tr>
<tr>
<td>6225</td>
<td>P. C. Klimas</td>
</tr>
<tr>
<td>6225</td>
<td>D. S. Oscar</td>
</tr>
<tr>
<td>6225</td>
<td>W. E. Ralph</td>
</tr>
<tr>
<td>6225</td>
<td>D. C. Reda</td>
</tr>
<tr>
<td>6225</td>
<td>N. A. Rumsey</td>
</tr>
<tr>
<td>6225</td>
<td>W. A. Stephenson</td>
</tr>
<tr>
<td>6225</td>
<td>H. J. Sutherland</td>
</tr>
<tr>
<td>7111</td>
<td>J. W. Reed</td>
</tr>
<tr>
<td>7544</td>
<td>D. R. Schafer</td>
</tr>
<tr>
<td>7544</td>
<td>T. G. Carne</td>
</tr>
<tr>
<td>7544</td>
<td>J. Lauffer</td>
</tr>
<tr>
<td>8024</td>
<td>P. W. Dean</td>
</tr>
<tr>
<td>9100</td>
<td>R. G. Clem</td>
</tr>
<tr>
<td>9122</td>
<td>T. M. Leonard</td>
</tr>
</tbody>
</table>