SLIFER Measurement for Explosive Yield

Robert C. Bass, Ben C. Benjamin, Harvey M. Miller, Dale R. Breding

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115 and Livermore, California 94550 for the United States Energy Research and Development Administration under Contract AT (29-11)-769
Printed April 1976

When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.
Issued by Sandia Laboratories, operated for the United States Energy Research and Development Administration by Sandia Corporation.

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
SLIFER MEASUREMENT FOR EXPLOSIVE YIELD

Robert C. Bass
Field Experiments Division 1111
Ben C. Benjamin
Harvey M. Miller
Dale R. Breding
Geosciences Instrumentation Division 1123
Sandia Laboratories
Albuquerque, New Mexico 87115

ABSTRACT

This report describes the SLIFER (Shorted Location Indicator by Frequency of Electrical Resonance) system used at Sandia Laboratories for determination of explosive yield of underground nuclear tests.
CONTENTS

I. General Description 7

II. Down-Hole Hardware 9
 SLIFER Oscillator 9
 SLIFER Cable 12
 Transmission Line 13
 Outer Shield 13

III. Recording Facility 14
 General 14
 Equipment 14
 Monitors 16
 Fiducial Signal 17

IV. Calibration, Data Reduction, and Analysis 17
 References 18

APPENDIX A - SLIFER SYSTEM SCHEMATICS AND MECHANICAL DRAWINGS 19

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLIFER Gages, Artist's Conception</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>SLIFER Gage System</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>SLIFER Oscillator Schematic</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Printed Circuit Card and Canister</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>SLIFER Chassis</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Plot of Frequency vs. Shorted Length</td>
<td>17</td>
</tr>
</tbody>
</table>
SLIFER MEASUREMENT FOR EXPLOSIVE YIELD

I. General Description

The explosive yield of a nuclear device is one of the more important quantities to be measured in any underground device test. Several methods of determining yield are in common use. Probably the most important of these methods is that using radio-chemistry. Another useful method is by means of the teleseismic signal. A third and less well known technique is by means of the SLIFER.

SLIFER is an acronym from Shorted Location Indicator by Frequency of Electrical Resonance. The technique, which is simply a method of continuously measuring stress-wave velocity in a solid or liquid material, has been in use at the Nevada Test Site and at other test sites since the advent of underground nuclear testing. Numerous events have had SLIFER measurements applied in the emplacement bore hole or in a nearby satellite hole.

Recent developments by R. C. Bass of the Sandia Laboratories and D. D. Eilers of the Los Alamos Scientific Laboratory have improved the technique of yield measurement with an emplacement hole SLIFER. This yield measurement is almost completely independent of the type of geological material in which the detonation takes place and requires only accurate measurement of shock front position as a function of time following the detonation.

The relation between shock position and time takes the form:

\[
\frac{\text{Radius}}{(\text{Yield})^{1/3}} = a \left(\frac{\text{Time}}{(\text{Yield})^{1/3}} \right)^b
\]

Radius is in metres, yield is in kilotons, and time is in milliseconds with empirically determined values for \(a\) and \(b\) being approximately 6 and 0.47. The relation appears to be valid for all yields and to be essentially independent of geologic materials in the hydrodynamic regions immediately adjacent to detonations. Calculations for other geologic media support the "universal" nature of the relation.

The approximately 6th power dependence of the yield on the radius suggests that any constant error in shock position data can easily be found permitting accurate yield determination without exact knowledge of the location of the explosive center point. A data analysis scheme
which systematically varies the radius will give the error and hence the correct yield when the sequence of radius-time data points fits the universal curve, that is when the ratio of the standard deviation to the average yield value is a minimum.

Figure 1 is an artist's conception of the SLIFER system as used for hydrodynamic yield measurements on underground nuclear tests.

Figure 1. SLIFER Gages, Artist's Conception

The hardware used in SLIFER measurements is quite simple compared with other instrumentation systems in use at the Nevada Test Site. The system, as shown in the block diagram of Figure 2, consists of a shorted length of air or solid dielectric coaxial cable as a component in the tank circuit of an oscillator. The system utilizes the fact that a shorted coaxial cable less than one-fourth wavelength long at the resonant frequency is inductive. As the very strong stress wave proceeds outward from the detonation, the SLIFER cable is crushed. As the short proceeds along the cable, the inductance decreases and the frequency of the system increases. Frequency, the parameter being measured, plotted against time, can be converted to shock front position versus time.
The field installation is quite simple. The lower end of the SLIFER cable is attached to the down-hole string at a location between 3-15 metres above the device center. While not required, a measurement of this distance is usually made. The only real requirements are that the cable be within the hydrodynamic shock region of the geological containment material and be in a completely stemmed volume. The stemming or backfill material can be a solid or liquid such as sand, concrete, drilling mud, or water. The SLIFER oscillator and the cable both above and below the oscillator are included in the cable bundle to the device. The active portion of the SLIFER cable is sometimes attached 30 to 60 cm away from the cable bundle in order to assure its being completely surrounded by stemming material. In most installations, two SLIFERS are used for redundancy.

The SLIFER system is a simple, low cost, easily installed, accurate yield measuring technique. Schematics and mechanical drawings for the complete system are included as Appendix A to this report.

II. Down-Hole Hardware

SLIFER Oscillator

The SLIFER oscillator, shown schematically in Figure 3 and in the photograph of Figure 4, is of the Colpitts type. The components are mounted on a 3.8 cm wide by 8.9 cm long printed
Figure 3. SLIFER Oscillator Schematic

Figure 4. Printed Circuit Card and Canister
circuit card which is mounted in a 5.0 cm diameter by 10.0 cm long aluminum canister with a type HN cable plug (male) on the uphole end, and a type N cable plug on the down-hole end.

The inductance of the SLIFER cable can be calculated by means of the following equation.

\[
L_1 = \frac{Z_0}{2\pi f_1} \tan \frac{2\pi f_1}{V_c}.
\]

Where:

\(L_1\) = resonant cable inductance for \(f_1\) (henrys)

\(Z_0\) = characteristic impedance of cable (ohms)

\(l\) = full length of cable (metres)

\(V_c\) = propagation velocity of cable (metres/s)

\(f_1\) = low frequency (full length of cable) (Hz)

After a value of resonant cable inductance has been determined for a given cable length and low frequency, the internal oscillator inductance \((L_i)\) is obtained from

\[
L_i = \frac{L_1}{\left(\frac{f_0}{f_1}\right)^2 - 1}.
\]

Where:

\(f_0\) = highest frequency in the frequency range of operation (resonant cable shorted at the oscillator) (Hz).

When the total inductance is known, the total capacitance required to obtain the desired frequency can be calculated using the following equation:

\[
C_T = \left(\frac{1}{2\pi f_1}\right)^2.
\]

Where \(L_T = L_1 + \text{tank circuit inductance}\). The small capacitor labeled "cal" in Figure 3 may be inserted to "tweak" the oscillator to the desired frequency.

Nominal frequencies used are 800 kHz with a full length of SLIFER cable, to 1200 kHz with the oscillator shorted at the SLIFER input. These frequencies were chosen to be compatible with the 900 ± 300 kHz discriminators available for data playback.
The SLIFER oscillator with its waterproofing neoprene rubber boots and cable end seal is shown on Drawing No. P90344, Appendix A. Normally, strain relief (Kellum) grips are installed on each side of the oscillator assembly. The Kellum grips are then fastened to turnbuckles which are attached to a supporting member located near the oscillator. A Kellum grip may also be used at the shorted end of the SLIFER to provide a tie-off point at the bottom. To provide additional mechanical protection during the downhole and backfill operation, an additional protector assembly, as shown on Drawing No. P73592, Appendix A, may be installed over the entire oscillator assembly.

Tests were conducted by Sandia on two transistor SLIFER oscillators (without SLIFER cables) to determine the effects of temperature vs. frequency. Results indicate a decrease in frequency of less than 2 percent from 0°F (-18°C) to 150°F (65°C).

SLIFER Cable

Various types of cables have been used as SLIFER cables on underground tests. All are approximately 1.25 cm diameter coaxial cables with 50 ohm impedance. Sandia and Los Alamos Laboratories have used the following types of cables:

1. Telcon (air dielectric)
2. Helical membrane (air dielectric)
3. Styroflex (air dielectric)
4. Heliax (air dielectric)
5. RG-213 (solid dielectric)
6. RG-214 (solid dielectric)

The first cable used by Sandia was made by Telcon, a British firm. This type of cable eventually became unavailable and a switch was made to Phelps Dodge helical membrane cable which has similar electrical and mechanical characteristics as Telcon. When helical membrane became a special order cable, a change was made to Phelps Dodge styroflex cable. This is a standard styroflex cable except the thin sheet of polystyrene normally installed between the polystyrene tape helix and the outer conductor is eliminated. This is done to enhance the shorting capability of the cable under shock stress.

Heliax cable, manufactured by Andrews Cable Company, was used in several deep water-filled holes where it was felt that the air dielectric cables normally used would not withstand the higher hydrostatic pressure encountered.

All of the air dielectric cables appear to short effectively at pressures of a few tenths of a kilobar or more. The air dielectric cables have the disadvantages of being difficult to handle and can be easily damaged during the downhole and backfill operation. Hydrostatic pressure tests conducted at Sandia revealed that one-half inch styroflex cable has a shorting threshold of approximately 2700 psi (1.86 x 10^7 pascals), and heliax 4200 psi (2.89 x 10^7 pascals).
RG-213 and RG-214 solid dielectric cables are more rugged and easier to handle; however, the crush threshold is about 10 kilobars.5

The approximate maximum lengths (one-fourth wavelength) for each type of SLIFER cable presently used are given in Table I. Lengths normally used are from 20 to 60 metres.

TABLE I
SLIFER Cable Data

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Velocity (%)</th>
<th>800 kHz</th>
<th>1200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ft.</td>
<td>M</td>
</tr>
<tr>
<td>Helical Membrane</td>
<td>96</td>
<td>295</td>
<td>90</td>
</tr>
<tr>
<td>Heliax</td>
<td>91.4</td>
<td>281</td>
<td>86</td>
</tr>
<tr>
<td>1/2 inch Styroflex</td>
<td>87</td>
<td>267</td>
<td>81</td>
</tr>
<tr>
<td>RG-213, RG-214, RF-1</td>
<td>65.9 ± 2</td>
<td>202</td>
<td>62</td>
</tr>
</tbody>
</table>

Transmission Line

The cable for both signal and power from the oscillator to the recording facility could be any of the aforementioned types. However, rigid containment requirements dictate the use of a gas blocked cable from the oscillator to the surface. RF-1 and RF-14 cables, manufactured for the Energy Research and Development Administration, are presently used. Electrically, RF-1 is similar to RG-213 or RG-214, and RF-14 is similar to Phelps Dodge 1/2-inch foamflex. Both cables are gas blocked to prohibit leakage of radioactive gases to the atmosphere.

Specifications for RF-1 cable require the cable to withstand a pressure of 3100 psi (2.137 x 10^7 pascals) at a temperature of not less than 121°C for 48 hours.6

Outer Shield

On the shorted end of the SLIFER cable, a three-metre-long outer shield is installed to minimize the effects of electromagnetic pulse (EMP) noise generated at zero time. The shield aids the system recovery after zero time preventing a prolonged loss of data. This shield is earth grounded to the downhole structure but is electrically isolated from the SLIFER cable.
III. Recording Facility

General

The SLIFER recording facility is usually housed in a trailer or an air transportable shelter. It requires an external 25 kW, 60 Hz, three-phase, 208-volt generator for power during the event. Prior to the event, the facility is normally powered from a commercial source. Generator fuel service as well as generator mechanics are required in case of mechanical problems. Support personnel are required to lay cables and assist with the downhole operation. In the event the recording facility must be located near surface zero, shock mitigation may be required to assure survival of equipment. Radio and/or telephone communications with the control center are also required. The facility is usually operated by two electronic technicians.

Equipment

Most of the equipment required in the recording trailer is commercially available. However, the SLIFER chassis itself is unique to the measurement. The Sandia SLIFER chassis is a power supply and amplifier system for five SLIFERS. The unit is shown in Figure 5.

The schematic for the SLIFER chassis is shown on Drawing No. CKN87742, Appendix A. Several features incorporated in the chassis are no longer used with the present SLIFER system, i.e., a mixer system which mixes the incoming frequency with an internal crystal controlled frequency to obtain a lower difference frequency, and a remotely operated relay in the SLIFER oscillator which shorts out the SLIFER cable at the oscillator to obtain the high frequency. Also, the chassis included a means by which the zero fiducial signal may inhibit the SLIFER oscillator signal for a short time. The main function of the chassis as now used is to provide 56 mA of constant current for the SLIFER oscillator and amplify the incoming signal to approximately one volt rms for the magnetic tape recorder.

The printed circuit cards labeled card B, A' and C' are used with the 800 to 1200 kHz SLIFER oscillator. There is only one card B per chassis. It's main purpose is to provide a regulated -24 volts for circuits on the A' cards, one for each SLIFER. The A' cards provide a constant current of 56 mA at about 14 volts for the SLIFER oscillator.

Another piece of equipment sometimes used but not commercially available is the automatic program timer. This unit requires a test site timing closure signal, e.g., -5 minutes, then counts down and provides internal relay closures for starting tape recorders of other functions required in the unmanned recording facility. In case the countdown signal is interrupted and the event is put in a "Hold" status, a "hold" signal (closure) is required to stop the program timer until the countdown is resumed when the "hold" signal is released. Also, a "reset" signal is required to reset the program timer to its original starting time in the event the countdown sequence is started over. The recording facility can also be operated remotely without use of the program timer if a sufficient number of test site signals (closures) at the required times are available.
A listing of all equipment follows. (At least two, assuming one spare, of each critical item are listed.)

2 - 1.5 MHz tape recorders
2 - Oscilloscopes with cameras (HP-180 w/1805A and 1821A)
2 - Digital freq. and time interval counters/dig. volt meters HP5326B
2 - Sandia SLIFER chassis, shop made
2 - Pulse generators, HP214A
2 - Engine generators, 25 kW
1 - Trailer or shelter, portable, with utilities
2 - Time code generator
2 - WWV receivers
4 - Radios for local communication
2 - Countdown receivers
2 - Hi potters, HP4329A
1 - Time mark generator (Cal scopes) HP226A
2 - Variable oscillators, HP3312A
2 - Time delay generators, Rutherford
3 - Counter (HP5345A)
2 - Program timer, shop made

The oscilloscopes with cameras are used to check out the transmission link and for other trouble shooting. The digital frequency meter/digital volt meters are used to adjust the SLIFER oscillator frequencies, and for general trouble shooting. The pulse generators are used in conjunction with the oscilloscopes and cameras to check the SLIFER transmission link. The generators are for electrical power. The time code generators provide a time base for the tape recorded data. The WWV receivers are used to adjust the time code generators to world time. The countdown receivers are used for communications to the test director. The hi potters are used to test all of the coaxial cables and their insulation. The time mark generators are used to calibrate the time base on the oscilloscopes and are used in data reduction. The variable oscillator is used to set up the tape machines, and as a general-purpose test device. The time delay generators and counters are used in field playback of SLIFER data.

Monitors

In order for the test director to know the status of the recording system prior to the detonation, a monitor system is often used. This system assures the test director that the trailer has power and the tape recorder is operating. Relay closures are provided by the equipment when operating properly.
Fiducial Signal

A zero time fiducial signal is recorded along with the SLIFER signal. This signal may be transmitted by hard wire or by radio. It usually consists of a very short electrical pulse from the device firing system.

IV. Calibration, Data Reduction, and Analysis

The oscillator is calibrated by means of a SLIFER cable of the same type and length to be used during the event. Small holes are drilled in the cable at three-meter intervals which permit shorting of the outer conductor to the inner conductor. The oscillator to be used during the event is connected to the cable and a plot of frequency versus shorted length is made (Figure 6). These data points are then compared with a computer generated theoretical frequency versus shorted length curve for the type of cable being used to verify validity of the calibration.

The magnetic tapes containing the SLIFER data are normally returned to the data reduction facility at Sandia Laboratories. The recorded data are played back through a 900±300 kHz discriminator, a frequency-to-voltage converter. The discriminated output is digitized and plotted. From this plot, zero time, to which all times are related, is determined from the first zero time EMP disturbance noted on the plot. A computer program is then used to convert the digitized frequency versus time data to distance versus time data. These data are then used in an iterative computer process to determine yield by means of the universal shock position versus time equation given in Section I.

![Figure 6. Plot of Frequency vs. Shorted Length](image-url)
References

APPENDIX A

SLIFER SYSTEM SCHEMATICS AND MECHANICAL DRAWINGS

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N87742</td>
<td>3</td>
<td>SLIFER Signal Cond Drawer, Assembly</td>
</tr>
<tr>
<td>CKN87742</td>
<td>3</td>
<td>Schematic</td>
</tr>
<tr>
<td>N88443</td>
<td>1</td>
<td>Chassis</td>
</tr>
<tr>
<td>N88412</td>
<td>4</td>
<td>Sub-chassis Assembly</td>
</tr>
<tr>
<td>N88411</td>
<td>2</td>
<td>Sub-Chassis</td>
</tr>
<tr>
<td>N88413</td>
<td>2</td>
<td>Bracket</td>
</tr>
<tr>
<td>N88414</td>
<td>1</td>
<td>Heat Sink</td>
</tr>
<tr>
<td>N92850</td>
<td>1</td>
<td>Heat Sink</td>
</tr>
<tr>
<td>N84707</td>
<td>3</td>
<td>Mixer, Card A, PCB Assembly</td>
</tr>
<tr>
<td>CKN84707</td>
<td>2</td>
<td>Schematic</td>
</tr>
<tr>
<td>CMN84707</td>
<td>3</td>
<td>Printed Circuit Master, CM2</td>
</tr>
<tr>
<td>N84708</td>
<td>3</td>
<td>Mixer, Card A', PCB Assembly</td>
</tr>
<tr>
<td>CKN84708</td>
<td>2</td>
<td>Schematic</td>
</tr>
<tr>
<td>CMN84708</td>
<td>2</td>
<td>Printed Circuit Master, CM1</td>
</tr>
<tr>
<td>P90344</td>
<td>A</td>
<td>SLIFER Gage, Assembly</td>
</tr>
<tr>
<td>P70365</td>
<td>A</td>
<td>Cable Seal, Type HN Conn, RG-213 Cable</td>
</tr>
<tr>
<td>P70366</td>
<td>A</td>
<td>Cable Seal, Type N Conn, Heliax Cable</td>
</tr>
<tr>
<td>P70367</td>
<td>C</td>
<td>Cable Seal, Type HN Conn, RF-1 Cable</td>
</tr>
<tr>
<td>P70368</td>
<td>B</td>
<td>SLIFER End Seal</td>
</tr>
<tr>
<td>P87922</td>
<td>A</td>
<td>End Cap, Type HN</td>
</tr>
<tr>
<td>P80338</td>
<td>A</td>
<td>Adapter, Center Cond., Type HJ4-50</td>
</tr>
<tr>
<td>P80339</td>
<td>A</td>
<td>End Cap, Type N</td>
</tr>
<tr>
<td>P80340</td>
<td>A</td>
<td>Ring</td>
</tr>
<tr>
<td>P90341</td>
<td>A</td>
<td>Adaptor, Outer Cond., Type HJ4-50</td>
</tr>
<tr>
<td>P90342</td>
<td>A</td>
<td>Cable Short, Type HJ4-50</td>
</tr>
<tr>
<td>T08044</td>
<td>A</td>
<td>Cable Short</td>
</tr>
<tr>
<td>P90343</td>
<td>A</td>
<td>Oscillator Can</td>
</tr>
<tr>
<td>N83412</td>
<td>3</td>
<td>Oscillator Type C, PCB Assembly</td>
</tr>
<tr>
<td>CKN83412</td>
<td>1</td>
<td>Schematic</td>
</tr>
<tr>
<td>CMN83412</td>
<td>2</td>
<td>Printed Circuit Master, CMB</td>
</tr>
<tr>
<td>N83420</td>
<td>3</td>
<td>Oscillator, Type C', PCB Assembly</td>
</tr>
<tr>
<td>CKN83420</td>
<td>2</td>
<td>Schematic</td>
</tr>
<tr>
<td>CMN83420</td>
<td>2</td>
<td>Printed Circuit Master, CMB</td>
</tr>
<tr>
<td>P73592</td>
<td>B</td>
<td>Oscillator Protector Assembly</td>
</tr>
<tr>
<td>P72495</td>
<td>B</td>
<td>Casting, Top</td>
</tr>
<tr>
<td>P72440</td>
<td>C</td>
<td>Casting, Bottom</td>
</tr>
<tr>
<td>N83493</td>
<td>3</td>
<td>Mixer, Card B, PCB Assembly</td>
</tr>
<tr>
<td>CNK83493</td>
<td>2</td>
<td>Schematic</td>
</tr>
<tr>
<td>CMN83493</td>
<td>3</td>
<td>Printed Circuit Master, CM2</td>
</tr>
</tbody>
</table>
NOTES
1. MATERIAL: ALUMINUM SHEET, 6061-T6 PER QQ-A-200/6, JASE IN.
2. ANGLE: PER MIL-STD-904, TYPE I, CLEAR.
3. LIMITS OF ACCEPTABLE WORKMENSHIP ARE DEFINED IN 6061-T6.
4. MARK PER MIL-STD-1629, CLASS A2, 1/4 INCH CHARACTERS.
NOTES
1. ALUMINUM SHEET, 2004-T4 PER 525-4-155/4. USE PLATE.
2. ANODIZE PER SUN42400, CLEAN.
3. LIMITS OF ACCEPTABLE WORKMANSHIP ARE DEFINED IN 5003300.
NOTES
1. ALUMINUM ALLOY CHANNEL,企業,型 NS 3103.
2. 2.5/8 X 1/2 X 1/2 TRUSS. MAY BE OBTAINED FROM DECISION.
 METAL AND SUPPLY CO., 1227 BELLAH AV, M.M.,
 ALBUQUERQUE, N.M.
3. MATERIAL FOR YOUR TUBES. TYPE C. CLEAR.
4. LIMITS OF ACCEPTABLE WORKMANSHIP ARE DEFINED IN S900000.

1.500±0.020
-0.251±0.010
 -0.936±0.005
 -0.252±0.010
 -0.500±0.020
4-40 UNC-2B
 2 HOMES

.760±0.020
.597±0.020
.545±0.005
.906±0.005
.375±0.005
.380±0.005
.750±0.020
.126 DIA
 2 HOLES
.139 DIA
 2 HOLES
.380 DIA
NOTES

1. VALUES OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS.
2. ▼ INDICATES CIRCUIT REPAIR.
3. CAPACITOR VALUES ARE IN MICROFARADS UNLESS OTHERWISE SPECIFIED
4. ◇ INDICATES SCREWDRIVER CONTROL.
NOTES

1. SOLDER PER MIL-STD-02, METHOD OPTIONAL.
NOTES:
1. GENERAL REQUIREMENTS ARE DEFINED IN 9900000-03.
2. MATERIAL: NEOPRENE RUBBER PER 4150190-01.

GENERAL REQUIREMENTS ARE DEFINED IN 9900000-03.
MATERIAL: NEOPRENE RUBBER PER 4150190-01.
1. GENERAL REQUIREMENTS ARE DEFINED IN 9900000-03.
2. MATERIAL: NEOPRENE RUBBER PER 4150190-01.
NOTES:

1. GENERAL REQUIREMENTS ARE DEFINED IN 9900000-03.
2. MATERIAL: NEOPRENE RUBBER PER 4150190-01.
NOTES

1. GENERAL REQUIREMENTS ARE DEFINED IN 9300000-03.
2. MATERIAL: NEOPRENE RUBBER PER 4150190-01.

<table>
<thead>
<tr>
<th>DESIGN AGENCY</th>
<th>ISSUE DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIG... AGENCY</td>
<td>ISSU... OESCIU... APPEAR</td>
<td>n D... CHI... tNGIII;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PREPARED BY</th>
<th>DATE</th>
<th>CHK</th>
<th>ENGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F.MARTINEZ @ 7652-2 D.LIST 9123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>TITLE SLIFER WAS SLYFYER G.JEYS .652-2 D.LIST 9123</td>
<td></td>
<td>3-24-69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.062 ± 0.030

.938 ± 0.030 DIA

.563 ± 0.005 DIA

4.500 ± 0.030

.062 ± 0.010 CHAMFER
NOTES

1. MATERIAL: ALUMINUM 6061-T6 2.000 ± .020 DIA STOCK.
2. ANODIZE, CLEAR.
NOTES
1. MATERIAL: BRASS, .250 DIA

.190 ±.015

.061

.064

THRU ONE WALL

.093 ±.002

.200 ±.015

.250 ±.015

.164

.170

.100 ±.015

.430 ±.030
NOTES

1. MATERIAL: ALUMINUM ALLOY, 7075-T6, 1.750 x .750 PLATE.
1. MATERIAL: ALUMINUM ALLOY 7075-T6, 2.000 x .500 PLATE.
NOTES

1. MATERIAL: BRASS, .750 DIA.

2.000 ± .060

.312 ± .015

.100 ± .015

.630 ± .005

.630 ± .010 FLAT

.070 ± .030 THREAD RELIEF

.030 ± .015 × 45° ± 1° CHAMFER

2 PL

.515 ± .005
1. MATERIAL: BRASS, .625 DIA.
I. GENERAL REQUIREMENTS ARE DEFINED IN 9300000-04.

2. MATERIAL: BRASS BAR, 1/2 HARD

NOTES

6-40 UNF-2B
4 HOLEs EQUALLY SPACED

6-40 UNF-2B
2 HOLES

-.030 2. MAX.

.4214.010
DIA

.375 .040, 4 PICS

45-1/2°

.750 .030
DIA.

.515 .010 DIA.

.375 .040, 4 PICS

1.062 .020
2 PICS

.171 .005 DIA. THRU

.000
NOTES

1. MATERIAL: ALUMINUM ALLOY, 6551-T6, 2.000 ± .020
 DIA x .350 WALL.

 .030 ± .015 x 45° /-1°
 CHAMFER BOTH ENDS

 .082 ± .010
 2 PL

 .480 ± .010

 .136 THRU X .141
 CSK 82° ± .1° TO
 .245 ± .010 DIA 4 HOLES
 AS SHOWN WITHIN .010
 BOTH ENDS

 1.900 ± .010

 1.610 ± .005
ALL CHANGES MADE ON THIS DWG AFFECTING THE ETCHED PATTERN MUST ALSO BE MADE ON CM-N83412

NOTES

1. MINIMUM DESIGNATED PATTERN SIZE: 0.005 INCH (0.127 MILLIMETER)

2. MARKS MIGHT BE MODIFIED TO INCLUDE MOUNTING HOLE COORDINATES.

3. MARKS MIGHT BE MODIFIED TO INCLUDE PART NUMBER.

4. PART NUMBER IS NOT MOUNTING HOLE COORDINATES.

5. ALL HOLES TO BE PLACED WITHIN 0.001 INCH (0.025 MILLIMETER) OF MOUNTING HOLE COORDINATES.

6. ELECTRIC APERTURES TO BE CURTAIN-SEALED AND INSTALLED IN PLACE.

7. NOTE POSITION OF THE HOLES MOUNTING HOLE COORDINATES.

8. NOT TO BE REFERENCED.

A. MA. BLACK 1-1/4 INCH ST, LOS ANGELES, S. CALIF.

B. INTERNATIONAL RECTIFIER CORP., 1305 SONOMA AV., P.O. BOX 9396, SAN JOSE, CALIF.

C. MULTITECH, INC., 505 FULTON ST., P.O. BOX 23, PALO ALTO, CALIF.

D. ECONOMIC ELECTRIC, 1910 N. MAIN, LAKELAND, FL.

E. RADIO CORP OF AMERICA, CANON MILLS, JUANITA, WASHINGTON, D.C.

F. INTERNATIONAL RECTIFIER CORP., 1305 SONOMA AV., SAN JOSE, CALIF.

G. MULTITECH, INC., 505 FULTON ST., P.O. BOX 23, PALO ALTO, CALIF.

H. DESIGNER APPLIES APP. PLANNING.

I. SYMBOLSHOULD BE PLACED BETWEEN MARK AND MOUNTING HOLE.
PRINTED BOARD N83412 CMA

NOTES
1. UNLESS OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS.
2. UNLESS OTHERWISE SPECIFIED, CAPACITANCE VALUES ARE IN MICROFARADS.
3. CAPACITOR TO BE INSTALLED IN FIELD.

<table>
<thead>
<tr>
<th>PART</th>
<th>VALUE</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>7500</td>
<td>RCA</td>
</tr>
<tr>
<td>C2</td>
<td>2700</td>
<td>RCA</td>
</tr>
<tr>
<td>C3</td>
<td>1000</td>
<td>RCA</td>
</tr>
<tr>
<td>C4</td>
<td>1000</td>
<td>RCA</td>
</tr>
<tr>
<td>C5</td>
<td>0.1</td>
<td>RCA</td>
</tr>
<tr>
<td>R1</td>
<td>7.5K</td>
<td>RCA</td>
</tr>
<tr>
<td>R2</td>
<td>6.8K</td>
<td>RCA</td>
</tr>
<tr>
<td>R3</td>
<td>10K</td>
<td>RCA</td>
</tr>
<tr>
<td>R4</td>
<td>100</td>
<td>RCA</td>
</tr>
<tr>
<td>R5</td>
<td>200</td>
<td>RCA</td>
</tr>
<tr>
<td>L1</td>
<td>12UH</td>
<td>RCA</td>
</tr>
<tr>
<td>L2</td>
<td>240UH</td>
<td>RCA</td>
</tr>
</tbody>
</table>

DESIGN/ACQUISITION/PROCUREMENT: N83412 CMA

1. UNLESS OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS.
2. UNLESS OTHERWISE SPECIFIED, CAPACITANCE VALUES ARE IN MICROFARADS.
3. CAPACITOR TO BE INSTALLED IN FIELD.

DESIGN/ACQUISITION/PROCUREMENT: N83412 CMA
NOTES:

1. POLISHED, LAMINATED PATTERN SHEET, RING, WIRE, LEAD WIRE, AND RESISTORS.
2. ONE SPECIFIC LOADING MARK FOR DESIGNER, 30" L. MARCH, 1959.
3. HANDLING SPECIFICATIONS ARE 2.5 IN. (63.5MM) MIN.
4. ALL HOLES 0.060" PLATED THROUGH.
5. SOLDER PLATED CARBON CONDUITS PER SPECIFICATION.
6. THRESHOLD DIMENSIONS TO BE DETERMINED IN FIELD.
7. NOTE POSITION OF THE PARTS INSTALLATION.
8. MAY BE RENAMED FORM.
9. E. N. MILLER FIRST NAME 210, SUB MANUFACTURER, S. SHIF.
10. SUPPLIES MANUFACTURED, NEL, OF TELEPHONE INC.
11. FOREIGN MANUFACTURER INC., MALAYSIA, N.
12. ORANGE ELECTRIC, ORANGE, CALIF., N.
13. RADIO TEXAS OF AMERICA, CANTERBURY, N.
14. INTERNATIONAL RECEPTOR, S.
15. MONTROSE SEMICONDUCTORS, PASSEY, 0.0 PA.
16. NOTE DIMENSIONS APPLY AFTER ASSEMBLY.
17. SCREW CONNECTION SHOWN TO BE PLUGGED BETWEEN SHOES AND UNDEREER SHOES
18. REQUIRED DUE SHOWN TO BE PLUGGED BETWEEN SHOES AND UNDEREER SHOES.

ALL CHANGES MADE ON THIS DWG AFFECTING THE LEGEND PATTERN MUST ALSO BE MADE ON CM-N83420.
NOTES
1. UNLESS OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS.
2. UNLESS OTHERWISE SPECIFIED, CAPACITANCE VALUES ARE IN MICROFARADS.

PRINTED BOARD N83420 CMA

DESIGN AGENCY
PART OR CONTROL NO.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>VALUE</th>
<th>TOLERANCE</th>
<th>PART NO./ S/N</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3300</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>220</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>1000</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0.11F</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>220K</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>6.6K</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>4.7K</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>3K</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>100</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>200</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>240UH</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>4700</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>33UH</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>240UH</td>
<td>±10</td>
<td>10A3-010</td>
<td></td>
</tr>
</tbody>
</table>

SLIFER
OSCILLATOR
TYPE C'

DESIGN AGENCY APPROVALS
TYPE C'

UNCLASSIFIED
SLIPER OSCILLATOR TYPE C' N83420 CMS
NOTES

MARK PER 91920-00, CLASS C-I, .250 INCHES HIGH, SERIAL MARKING 1,2,3,4,5 ... FOR MATCHING PARTS AT ASSEMBLY.

- 20 UNC - 2B X .500 X .030 DEEP 4 HOLES IN ITEM 1 LOCATE FROM ITEM 2

MARKING 1,2,3,4,5 ... FOR MATCHING PARTS AT ASSEMBLY.

LIST OF MATERIAL

SLIFER & CABLE PROTECTOR ASSEMBLY

PART CLASSIFICATION

UNCLASSIFIED

UNIT NUMBER

P73592

SHEET 1 OF 1
NOTES
1. Resistance Values are in 5% unless otherwise specified.
2. Capacitance Values are 0.0022µF unless otherwise specified.
4. C indicates screwdriver adjustment.

-24V OUTPUT
-32V TS UNREG POWER SUPPLY
DISTRIBUTION:

US ERDA (6)
Washington, DC 20545
Attn: Gen. E. B. Giller (1)
Maj. A. J. Johnson (2)
R. T. Duff (2)
R. Richards (1)

State Department
Washington, DC 20520
Attn: E. Ifft

Commander, Field Command (2)
Defense Nuclear Agency
Kirtland Air Force Base
Albuquerque, NM 87115
Attn: Col. K. D. McAllister
FCTD-D

University of California (4)
Lawrence Livermore Laboratory
P. O. Box 808
Livermore, CA 94550
Attn: M. D. Nordyke
A. Holzer
C. Seismore
C. Olsen

Los Alamos Scientific Laboratory (3)
P. O. Box 1663
Los Alamos, NM 87545
Attn: D. Westervelt
D. D. Eilers
H. C. Goldwire

1100 C. D. Broyles
1110 J. D. Kennedy
1111 C. R. Mehl
1111 L. J. Vortman
1111 R. C. Bass (3)
1111 G. E. Larsen
1120 G. E. Hansche
1123 B. C. Benjamin (5)
1123 D. R. Breding (3)
1123 H. M. Miller (5)
1130 H. E. Viney
1131 B. G. Edwards
1131 A. J. Brouillard (5)
1150 J. R. Banister
1152 D. M. Ellett
1352 P. A. Stokes
8266 E. A. Aas (2)
3141 C. A. Pepmueller (Actg) (5)
3151 W. L. Garner (3)

For: ERDA/TIC (Unlimited Release)
ERDA/TIC (25)
(R. P. Campbell, 3171-1)